3 resultados para Filler

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Membrane-based separation processes are acquiring, in the last years, an increasing importance because of their intrinsic energetic and environmental sustainability: some types of polymeric materials, showing adequate perm-selectivity features, appear rather suitable for these applications, because of their relatively low cost and easy processability. In this work have been studied two different types of polymeric membranes, in view of possible applications to the gas separation processes, i.e. Mixed Matrix Membranes (MMMs) and high free volume glassy polymers. Since the early 90’s, it has been understood that the performances of polymeric materials in the field of gas separations show an upper bound in terms of permeability and selectivity: in particular, an increase of permeability is often accompanied by a decrease of selectivity and vice-versa, while several inorganic materials, like zeolites or silica derivates, can overcome this limitation. As a consequence, it has been developed the idea of dispersing inorganic particles in polymeric matrices, in order to obtain membranes with improved perm-selectivity features. In particular, dispersing fumed silica nanoparticles in high free volume glassy polymers improves in all the cases gases and vapours permeability, while the selectivity may either increase or decrease, depending upon material and gas mixture: that effect is due to the capacity of nanoparticles to disrupt the local chain packing, increasing the dimensions of excess free volume elements trapped in the polymer matrix. In this work different kinds of MMMs were fabricated using amorphous Teflon® AF or PTMSP and fumed silica: in all the cases, a considerable increase of solubility, diffusivity and permeability of gases and vapours (n-alkanes, CO2, methanol) was observed, while the selectivity shows a non-monotonous trend with filler fraction. Moreover, the classical models for composites are not able to capture the increase of transport properties due to the silica addition, so it has been necessary to develop and validate an appropriate thermodynamic model that allows to predict correctly the mass transport features of MMMs. In this work, another material, called poly-trimethylsilyl-norbornene (PTMSN) was examined: it is a new generation high free volume glassy polymer that, like PTMSP, shows unusual high permeability and selectivity levels to the more condensable vapours. These two polymer differ each other because PTMSN shows a more pronounced chemical stability, due to its structure double-bond free. For this polymer, a set of Lattice Fluid parameters was estimated, making possible a comparison between experimental and theoretical solubility isotherms for hydrocarbons and alcoholic vapours: the successfully modelling task, based on application of NELF model, offers a reliable alternative to direct sorption measurement, which is extremely time-consuming due to the relevant relaxation phenomena showed by each sorption step. For this material also dilation experiments were performed, in order to quantify its dimensional stability in presence of large size, swelling vapours.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This PhD thesis focused on nanomaterial (NM) engineering for occupational health and safety, in the frame of the EU project “Safe Nano Worker Exposure Scenarios (SANOWORK)”. Following a safety by design approach, surface engineering (surface coating, purification process, colloidal force control, wet milling, film coating deposition and granulation) were proposed as risk remediation strategies (RRS) to decrease toxicity and emission potential of NMs within real processing lines. In the first case investigated, the PlasmaChem ZrO2 manufacturing, the colloidal force control applied to the washing of synthesis rector, allowed to reduce ZrO2 contamination in wastewater, performing an efficient recycling procedure of ZrO2 recovered. Furthermore, ZrO2 NM was investigated in the ceramic process owned by CNR-ISTEC and GEA-Niro; the spray drying and freeze drying techniques were employed decreasing NM emissivity, but maintaining a reactive surface in dried NM. Considering the handling operation of nanofibers (NFs) obtained through Elmarco electrospinning procedure, the film coating deposition was applied on polyamide non-woven to avoid free fiber release. For TiO2 NF the wet milling was applied to reduce and homogenize the aspect ratio, leading to a significant mitigation of fiber toxicity. In the Colorobbia spray coating line, Ag and TiO2 nanosols, employed to transfer respectively antibacterial or depolluting properties to different substrates, were investigated. Ag was subjected to surface coating and purification, decreasing NM toxicity. TiO2 was modified by surface coating, spray drying and blending with colloidal SiO2, improving its technological performance. In the extrusion of polymeric matrix charged with carbon nanotube (CNTs) owned by Leitat, the CNTs used as filler were granulated by spray drying and freeze spray drying techniques, allowing to reduce their exposure potential. Engineered NMs tested by biologists were further investigated in relevant biological conditions, to improve the knowledge of structure/toxicity mechanisms and obtain new insights for the design of safest NMs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Obiettivi: valutare in pazienti con rene singolo congenito la correlazione tra il filtrato glomerulare misurato con il DTPA (DTPA-VFG) e 1) marker laboratoristici di danno renale (creatinina, cistatinaC, proteinuria) 2) formule per stimare il filtrato glomerulare 3) parametri di valutazione della crescita renale ecografica. Materiali e metodi: Sono stati arruolati 118 pazienti con rene singolo congenito tra 0 e 18 anni. Sono stati valutati a ogni visita altezza, creatinina, cistatinaC, proteinuria e lunghezza ecografica renale. E’ stato calcolato il filtrato stimato con formule basate sulla creatinina (Schwartz), sulla cistatina C (Zappitelli, Filler, Grubb e Bokenkamp) e su entrambe (equazione di Zappitelli). La crescita renale è stata valutata come rapporto lunghezza ecografica/altezza corporea (USL/H), differenza percentuale tra lunghezza renale misurata e attesa per età (delta%) e presenza o meno d’ipertrofia compensatoria. In 74 bambini è stata misurata la DTPA-VFG. Risultati: Il follow-up è di 2.1 ± 0.9 anni. Il 65% sono maschi. Nessun paziente ha sviluppato danno renale cronico. La media del DTPA-VFG era di 135±44ml/min/1.73m², il valore medio della creatinina 0.47±0.17mg/dl e di cistatinaC di 1±0.4mg/L. La lunghezza ecografica renale media era di 100±17 mm, il rapporto USL/H medio di 0.8±0,1 e il delta% di 1,13±11,4, il 66% presentava ipertrofia renale. Le uniche correlazioni significative con DTPA-VFG sono inversa con la creatinina (p=<.001) e lineare con USL/H (p=<.001). Discussione: Lo studio ha mostrato che come per altre nefrouropatie, la creatina e l’ecografia renale siano due strumenti validi per il follow-up dei pazienti con rene singolo congenito. Il limite principale è dovuto al fatto che nessuno dei pazienti ha sviluppato danno renale cronico e pertanto non è stato possibile stabilire dei cutt-off di rischio per parametri quali USL/H.