3 resultados para File sharing applications
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
La prova informatica richiede l’adozione di precauzioni come in un qualsiasi altro accertamento scientifico. Si fornisce una panoramica sugli aspetti metodologici e applicativi dell’informatica forense alla luce del recente standard ISO/IEC 27037:2012 in tema di trattamento del reperto informatico nelle fasi di identificazione, raccolta, acquisizione e conservazione del dato digitale. Tali metodologie si attengono scrupolosamente alle esigenze di integrità e autenticità richieste dalle norme in materia di informatica forense, in particolare della Legge 48/2008 di ratifica della Convenzione di Budapest sul Cybercrime. In merito al reato di pedopornografia si offre una rassegna della normativa comunitaria e nazionale, ponendo l’enfasi sugli aspetti rilevanti ai fini dell’analisi forense. Rilevato che il file sharing su reti peer-to-peer è il canale sul quale maggiormente si concentra lo scambio di materiale illecito, si fornisce una panoramica dei protocolli e dei sistemi maggiormente diffusi, ponendo enfasi sulla rete eDonkey e il software eMule che trovano ampia diffusione tra gli utenti italiani. Si accenna alle problematiche che si incontrano nelle attività di indagine e di repressione del fenomeno, di competenza delle forze di polizia, per poi concentrarsi e fornire il contributo rilevante in tema di analisi forensi di sistemi informatici sequestrati a soggetti indagati (o imputati) di reato di pedopornografia: la progettazione e l’implementazione di eMuleForensic consente di svolgere in maniera estremamente precisa e rapida le operazioni di analisi degli eventi che si verificano utilizzando il software di file sharing eMule; il software è disponibile sia in rete all’url http://www.emuleforensic.com, sia come tool all’interno della distribuzione forense DEFT. Infine si fornisce una proposta di protocollo operativo per l’analisi forense di sistemi informatici coinvolti in indagini forensi di pedopornografia.
Resumo:
The convergence between the recent developments in sensing technologies, data science, signal processing and advanced modelling has fostered a new paradigm to the Structural Health Monitoring (SHM) of engineered structures, which is the one based on intelligent sensors, i.e., embedded devices capable of stream processing data and/or performing structural inference in a self-contained and near-sensor manner. To efficiently exploit these intelligent sensor units for full-scale structural assessment, a joint effort is required to deal with instrumental aspects related to signal acquisition, conditioning and digitalization, and those pertaining to data management, data analytics and information sharing. In this framework, the main goal of this Thesis is to tackle the multi-faceted nature of the monitoring process, via a full-scale optimization of the hardware and software resources involved by the {SHM} system. The pursuit of this objective has required the investigation of both: i) transversal aspects common to multiple application domains at different abstraction levels (such as knowledge distillation, networking solutions, microsystem {HW} architectures), and ii) the specificities of the monitoring methodologies (vibrations, guided waves, acoustic emission monitoring). The key tools adopted in the proposed monitoring frameworks belong to the embedded signal processing field: namely, graph signal processing, compressed sensing, ARMA System Identification, digital data communication and TinyML.
Resumo:
The availability of a huge amount of source code from code archives and open-source projects opens up the possibility to merge machine learning, programming languages, and software engineering research fields. This area is often referred to as Big Code where programming languages are treated instead of natural languages while different features and patterns of code can be exploited to perform many useful tasks and build supportive tools. Among all the possible applications which can be developed within the area of Big Code, the work presented in this research thesis mainly focuses on two particular tasks: the Programming Language Identification (PLI) and the Software Defect Prediction (SDP) for source codes. Programming language identification is commonly needed in program comprehension and it is usually performed directly by developers. However, when it comes at big scales, such as in widely used archives (GitHub, Software Heritage), automation of this task is desirable. To accomplish this aim, the problem is analyzed from different points of view (text and image-based learning approaches) and different models are created paying particular attention to their scalability. Software defect prediction is a fundamental step in software development for improving quality and assuring the reliability of software products. In the past, defects were searched by manual inspection or using automatic static and dynamic analyzers. Now, the automation of this task can be tackled using learning approaches that can speed up and improve related procedures. Here, two models have been built and analyzed to detect some of the commonest bugs and errors at different code granularity levels (file and method levels). Exploited data and models’ architectures are analyzed and described in detail. Quantitative and qualitative results are reported for both PLI and SDP tasks while differences and similarities concerning other related works are discussed.