3 resultados para Fertility maps
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Although in Europe and in the USA many studies focus on organic, little is known on the topic in China. This research provides an insight on Shanghai consumers’ perception of organic, aiming at understanding and representing in graphic form the network of mental associations that stems from the organic concept. To acquire, process and aggregate the individual networks it was used the “Brand concept mapping” methodology (Roedder et al., 2006), while the data analysis was carried out also using analytic procedures. The results achieved suggest that organic food is perceived as healthy, safe and costly. Although these attributes are pretty much consistent with the European perception, some relevant differences emerged. First, organic is not necessarily synonymous with natural product in China, also due to a poor translation of the term in the Chinese language that conveys the idea of a manufactured product. Secondly, the organic label has to deal with the competition with the green food label in terms of image and positioning on the market, since they are easily associated and often confused. “Environmental protection” also emerged as relevant association, while the ethical and social values were not mentioned. In conclusion, health care and security concerns are the factors that influence most the food consumption in China (many people are so concerned about food safety that they found it difficult to shop), and the associations “Safe”, “Pure and natural”, “without chemicals” and “healthy” have been identified as the best candidates for leveraging a sound image of organic food .
Resumo:
This study investigates the changes in soil fertility due to the different aggregate breakdown mechanisms and it analyses their relationships in different soil-plant systems, using physical aggregates behavior and organic matter (OM) changes as indicators. Three case studies were investigated: i) an organic agricultural soil, where a combined method, aimed to couple aggregate stability to nutrients loss, were tested; ii) a soil biosequence, where OM chemical characterisation and fractionation of aggregates on the basis of their physical behaviour were coupled and iii) a soils sequence in different phytoclimatic conditions, where isotopic C signature of separated aggregates was analysed. In agricultural soils the proposed combined method allows to identify that the severity of aggregate breakdown affected the quantity of nutrients lost more than nutrients availability, and that P, K and Mg were the most susceptible elements to water abrasion, while C and N were mainly susceptible to wetting. In the studied Chestnut-Douglas fir biosequence, OM chemical properties affected the relative importance of OM direct and indirect mechanisms (i.e., organic and organic-metallic cements, respectively) involved in aggregate stability and nutrient losses: under Douglas fir, high presence of carboxylate groups enhanced OM-metal interactions and stabilised aggregates; whereas under Chestnut, OM directly acted and fresh, more C-rich OM was preserved. OM direct mechanism seemed to be more efficient in C preservation in aggregates. The 13C natural abundance approach showed that, according to phytoclimatic conditions, stable macroaggregates can form both around partially decomposed OM and by organic-mineral interactions. In topsoils, aggregate resistance enhanced 13C-rich OM preservation, but in subsoils C preservation was due to other mechanisms, likely OM-mineral interactions. The proposed combined approach seems to be useful in the understanding of C and nutrients fate relates to water stresses, and in future research it could provide new insights into the complexity of soil biophysical processes.