4 resultados para Ferns, Fossil.
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Phenol and cresols represent a good example of primary chemical building blocks of which 2.8 million tons are currently produced in Europe each year. Currently, these primary phenolic building blocks are produced by refining processes from fossil hydrocarbons: 5% of the world-wide production comes from coal (which contains 0.2% of phenols) through the distillation of the tar residue after the production of coke, while 95% of current world production of phenol is produced by the distillation and cracking of crude oil. In nature phenolic compounds are present in terrestrial higher plants and ferns in several different chemical structures while they are essentially absent in lower organisms and in animals. Biomass (which contain 3-8% of phenols) represents a substantial source of secondary chemical building blocks presently underexploited. These phenolic derivatives are currently used in tens thousand of tons to produce high cost products such as food additives and flavours (i.e. vanillin), fine chemicals (i.e. non-steroidal anti-inflammatory drugs such as ibuprofen or flurbiprofen) and polymers (i.e. poly p-vinylphenol, a photosensitive polymer for electronic and optoelectronic applications). European agrifood waste represents a low cost abundant raw material (250 millions tons per year) which does not subtract land use and processing resources from necessary sustainable food production. The class of phenolic compounds is essentially constituted by simple phenols, phenolic acids, hydroxycinnamic acid derivatives, flavonoids and lignans. As in the case of coke production, the removal of the phenolic contents from biomass upgrades also the residual biomass. Focusing on the phenolic component of agrifood wastes, huge processing and marketing opportunities open since phenols are used as chemical intermediates for a large number of applications, ranging from pharmaceuticals, agricultural chemicals, food ingredients etc. Following this approach we developed a biorefining process to recover the phenolic fraction of wheat bran based on enzymatic commercial biocatalysts in completely water based process, and polymeric resins with the aim of substituting secondary chemical building blocks with the same compounds naturally present in biomass. We characterized several industrial enzymatic product for their ability to hydrolize the different molecular features that are present in wheat bran cell walls structures, focusing on the hydrolysis of polysaccharidic chains and phenolics cross links. This industrial biocatalysts were tested on wheat bran and the optimized process allowed to liquefy up to the 60 % of the treated matter. The enzymatic treatment was also able to solubilise up to the 30 % of the alkali extractable ferulic acid. An extraction process of the phenolic fraction of the hydrolyzed wheat bran based on an adsorbtion/desorption process on styrene-polyvinyl benzene weak cation-exchange resin Amberlite IRA 95 was developed. The efficiency of the resin was tested on different model system containing ferulic acid and the adsorption and desorption working parameters optimized for the crude enzymatic hydrolyzed wheat bran. The extraction process developed had an overall yield of the 82% and allowed to obtain concentrated extracts containing up to 3000 ppm of ferulic acid. The crude enzymatic hydrolyzed wheat bran and the concentrated extract were finally used as substrate in a bioconversion process of ferulic acid into vanillin through resting cells fermentation. The bioconversion process had a yields in vanillin of 60-70% within 5-6 hours of fermentation. Our findings are the first step on the way to demonstrating the economical feasibility for the recovery of biophenols from agrifood wastes through a whole crop approach in a sustainable biorefining process.
Resumo:
The ‘Continental Intercalaire’ deposits of the Tataouine basin of southern Tunisia preserve one of the most diverse Cretaceous vertebrate fauna from Africa. This research project focuses on a detailed revision of the stratigraphic distribution of mid-Cretaceous fossil beds in the Tataouine Basin and includes the description of four, newly discovered vertebrate tracksites. In the Tataouine region, macro- and microvertebrate remains are recovered from three stratigraphic intervals: the lower Douiret Formation (Barremian), the Chenini (rare) and Oum ed Diab members of the Aïn El Guettar Formation (Albian). A detailed, basin-scale revision of the stratigraphic occurrence of fossil-bearing strata indicates 1. lateral facies variability within the context of a low gradient, circalittoral to coastal-plain environment; 2. multiple and diachronous fossil beds which include elasmobranchs, actinopterygians, sarcopterygians, turtles, crocodyliforms, pterosaurs, and non-avian dinosaurs remains. Four vertebrate tracksites have been discovered in the study area: 1. the Middle Jurassic Beni Ghedir site which preserves approximately 130 tridactyl footprints distributed over an area of 200 square meters, representing the oldest evidence of a dinosaur fauna in Tunisia; 2. the late Albian Chenini tracksite, which includes poorly preserved crocodilian tracks and the dinosaur ichnospecies Apulosauripus federicianus; 3. the Cenomanian Ksar Ayaat locality, where footprints assigned to a pleurodiran turtle are exposed, and 4. the upper Cenomanian Jebel Boulouha site which presents almost 100 well-preserved tridactyl tracks referred to small-sized theropods, fossil bird tracks - ichnogenus Koreanaorins – and tracks referred to a mammalian trackmaker, representing the first report of fossil bird and mammal from the Cretaceous of continental Africa and Tunisia respectively. In addition, data collected from the Tunisian tracksites have been compared with coeval tracksites in Italy and Croatia, showing analogies in morphology and paleoenvironment of dinosaur ichnoassociations, supporting the already hypothesized subaerial connection between these areas during the mid-Cretaceous.
Resumo:
The formation and evolution of galaxy bulges is a greatly debated topic in modern astrophysics. An approach to address this issue is to look at the Galactic bulge, the closest to us. According to some theoretical models, our bulge built-up from the merger of substructures formed from the instability and fragmentation of a proto-disk in the early phases of Galactic evolution. We may have discovered the remnant of one of these substructures: the stellar system Terzan 5. Terzan 5 hosts two stellar populations with different iron abundances, thus suggesting it once was far more massive than today. Moreover, its peculiar chemistry resembles that observed only in the Galactic bulge. In this Thesis we perform a detailed photometric and spectroscopic analysis of this cluster to determine its formation and evolutionary histories. Form the photometric point of view we built a high-resolution differential reddening map in Terzan 5 direction and we measured relative proper motions to separate its member population from the contaminating field stars. This information represents the necessary work to measure the absolute ages of Terzan 5 populations via the Turn-off luminosity method. From the spectroscopic point of view we measured abundances for more than 600 stars belonging to Terzan 5 and its surroundings in order to build the largest field-decontaminated metallicity distribution for this system. We find that the metallicity distribution is extremely wide (more than 1 dex) and we discovered a third, metal-poor and alpha-enhanced population with average [Fe/H]=-0.8. The striking similarity between Terzan 5 and the bulge in terms of their chemical formation and evolution revealed by this Thesis suggests that Terzan 5 formed in situ with the bulge itself. In particular its metal-poor populations trace the early stages of the bulge formation, while its most metal-rich component contains crucial information on the bulge more recent evolution.
Resumo:
The dependence of industrial agricolture on fossil fuels has been assessed in two comparative case studies between Italy (Emilia-Romagna and Piemonte)and Missouri. The first is related to dairy farming; 15 different farms were surveyed, divided into three different groups: grain based, pasture based and organic. The second is devoted to rice cropping; 12 holdings were examined divided into two groups: conventional and organic. Energy footprint was determined for structures, machinery, fertilizers, pesticides, fuel, electricity, feed and seeds. Possible scenarios of transition to a more sustainable agricolture based on renewable energy sources were analized in detail for all the farms analized.