3 resultados para Feedback multi-source

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new multi-energy CT for small animals is being developed at the Physics Department of the University of Bologna, Italy. The system makes use of a set of quasi-monochromatic X-ray beams, with energy tunable in a range from 26 KeV to 72 KeV. These beams are produced by Bragg diffraction on a Highly Oriented Pyrolytic Graphite crystal. With quasi-monochromatic sources it is possible to perform multi-energy investigation in a more effective way, as compared with conventional X-ray tubes. Multi-energy techniques allow extracting physical information from the materials, such as effective atomic number, mass-thickness, density, that can be used to distinguish and quantitatively characterize the irradiated tissues. The aim of the system is the investigation and the development of new pre-clinic methods for the early detection of the tumors in small animals. An innovative technique, the Triple-Energy Radiography with Contrast Medium (TER), has been successfully implemented on our system. TER consist in combining a set of three quasi-monochromatic images of an object, in order to obtain a corresponding set of three single-tissue images, which are the mass-thickness map of three reference materials. TER can be applied to the quantitative mass-thickness-map reconstruction of a contrast medium, because it is able to remove completely the signal due to other tissues (i.e. the structural background noise). The technique is very sensitive to the contrast medium and is insensitive to the superposition of different materials. The method is a good candidate to the early detection of the tumor angiogenesis in mice. In this work we describe the tomographic system, with a particular focus on the quasi-monochromatic source. Moreover the TER method is presented with some preliminary results about small animal imaging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work of thesis is the refined estimations of source parameters. To such a purpose we used two different approaches, one in the frequency domain and the other in the time domain. In frequency domain, we analyzed the P- and S-wave displacement spectra to estimate spectral parameters, that is corner frequencies and low frequency spectral amplitudes. We used a parametric modeling approach which is combined with a multi-step, non-linear inversion strategy and includes the correction for attenuation and site effects. The iterative multi-step procedure was applied to about 700 microearthquakes in the moment range 1011-1014 N•m and recorded at the dense, wide-dynamic range, seismic networks operating in Southern Apennines (Italy). The analysis of the source parameters is often complicated when we are not able to model the propagation accurately. In this case the empirical Green function approach is a very useful tool to study the seismic source properties. In fact the Empirical Green Functions (EGFs) consent to represent the contribution of propagation and site effects to signal without using approximate velocity models. An EGF is a recorded three-component set of time-histories of a small earthquake whose source mechanism and propagation path are similar to those of the master event. Thus, in time domain, the deconvolution method of Vallée (2004) was applied to calculate the source time functions (RSTFs) and to accurately estimate source size and rupture velocity. This technique was applied to 1) large event, that is Mw=6.3 2009 L’Aquila mainshock (Central Italy), 2) moderate events, that is cluster of earthquakes of 2009 L’Aquila sequence with moment magnitude ranging between 3 and 5.6, 3) small event, i.e. Mw=2.9 Laviano mainshock (Southern Italy).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gastrointestinal stromal tumors (GIST) are mesenchymal neoplasms frequently caused by a gain of function mutation in KIT or PDGFRα, two tyrosine kinase receptors (TKR). For this reason, they are successfully treated with imatinib, a tyrosine kinase inhibitor (TKI). However, the therapy is typically long-term ineffective due to imatinib resistance, which represents the main issue in the clinic of GISTs. Although numerous efforts have been made in the last two decades to develop novel therapies for imatinib-resistant GISTs, the approvals of multi-target TKIs have only improved the clinical outcomes modestly. Emblematic is the recent failure of ripretinib in the phase III INTRIGUE trial, decisively marking the end of the paradigm only based on the central role of KIT secondary mutations in imatinib resistance, and the consequent seeking of multi-target TKIs as the solution. Consistent with this clinical result, preclinical studies have revealed numerous mechanisms of resistance that are not targetable with multi-target TKIs, indicating that imatinib resistance is more multifaceted than initially hypothesized and explaining the modest efficacy of these latter. In this scenario, the absence of drugs capable of long-term counteracting the rise of imatinib-resistant subclones unavoidably leads to progressive disease and metastasis. In particular, the onset of metastases remarkably impacts the median overall survival and determines the most GIST-related deaths. Therefore, new therapy proposals are needed. Here, we present two project lines investigating novel strategies to counteract imatinib-resistant GISTs.