5 resultados para Feature Extraction Algorithms
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The identification of people by measuring some traits of individual anatomy or physiology has led to a specific research area called biometric recognition. This thesis is focused on improving fingerprint recognition systems considering three important problems: fingerprint enhancement, fingerprint orientation extraction and automatic evaluation of fingerprint algorithms. An effective extraction of salient fingerprint features depends on the quality of the input fingerprint. If the fingerprint is very noisy, we are not able to detect a reliable set of features. A new fingerprint enhancement method, which is both iterative and contextual, is proposed. This approach detects high-quality regions in fingerprints, selectively applies contextual filtering and iteratively expands like wildfire toward low-quality ones. A precise estimation of the orientation field would greatly simplify the estimation of other fingerprint features (singular points, minutiae) and improve the performance of a fingerprint recognition system. The fingerprint orientation extraction is improved following two directions. First, after the introduction of a new taxonomy of fingerprint orientation extraction methods, several variants of baseline methods are implemented and, pointing out the role of pre- and post- processing, we show how to improve the extraction. Second, the introduction of a new hybrid orientation extraction method, which follows an adaptive scheme, allows to improve significantly the orientation extraction in noisy fingerprints. Scientific papers typically propose recognition systems that integrate many modules and therefore an automatic evaluation of fingerprint algorithms is needed to isolate the contributions that determine an actual progress in the state-of-the-art. The lack of a publicly available framework to compare fingerprint orientation extraction algorithms, motivates the introduction of a new benchmark area called FOE (including fingerprints and manually-marked orientation ground-truth) along with fingerprint matching benchmarks in the FVC-onGoing framework. The success of such framework is discussed by providing relevant statistics: more than 1450 algorithms submitted and two international competitions.
Resumo:
Monitoring foetal health is a very important task in clinical practice to appropriately plan pregnancy management and delivery. In the third trimester of pregnancy, ultrasound cardiotocography is the most employed diagnostic technique: foetal heart rate and uterine contractions signals are simultaneously recorded and analysed in order to ascertain foetal health. Because ultrasound cardiotocography interpretation still lacks of complete reliability, new parameters and methods of interpretation, or alternative methodologies, are necessary to further support physicians’ decisions. To this aim, in this thesis, foetal phonocardiography and electrocardiography are considered as different techniques. Further, variability of foetal heart rate is thoroughly studied. Frequency components and their modifications can be analysed by applying a time-frequency approach, for a distinct understanding of the spectral components and their change over time related to foetal reactions to internal and external stimuli (such as uterine contractions). Such modifications of the power spectrum can be a sign of autonomic nervous system reactions and therefore represent additional, objective information about foetal reactivity and health. However, some limits of ultrasonic cardiotocography still remain, such as in long-term foetal surveillance, which is often recommendable mainly in risky pregnancies. In these cases, the fully non-invasive acoustic recording, foetal phonocardiography, through maternal abdomen, represents a valuable alternative to the ultrasonic cardiotocography. Unfortunately, the so recorded foetal heart sound signal is heavily loaded by noise, thus the determination of the foetal heart rate raises serious signal processing issues. A new algorithm for foetal heart rate estimation from foetal phonocardiographic recordings is presented in this thesis. Different filtering and enhancement techniques, to enhance the first foetal heart sounds, were applied, so that different signal processing techniques were implemented, evaluated and compared, by identifying the strategy characterized on average by the best results. In particular, phonocardiographic signals were recorded simultaneously to ultrasonic cardiotocographic signals in order to compare the two foetal heart rate series (the one estimated by the developed algorithm and the other provided by cardiotocographic device). The algorithm performances were tested on phonocardiographic signals recorded on pregnant women, showing reliable foetal heart rate signals, very close to the ultrasound cardiotocographic recordings, considered as reference. The algorithm was also tested by using a foetal phonocardiographic recording simulator developed and presented in this research thesis. The target was to provide a software for simulating recordings relative to different foetal conditions and recordings situations and to use it as a test tool for comparing and assessing different foetal heart rate extraction algorithms. Since there are few studies about foetal heart sounds time characteristics and frequency content and the available literature is poor and not rigorous in this area, a data collection pilot study was also conducted with the purpose of specifically characterising both foetal and maternal heart sounds. Finally, in this thesis, the use of foetal phonocardiographic and electrocardiographic methodology and their combination, are presented in order to detect foetal heart rate and other functioning anomalies. The developed methodologies, suitable for longer-term assessment, were able to detect heart beat events correctly, such as first and second heart sounds and QRS waves. The detection of such events provides reliable measures of foetal heart rate, potentially information about measurement of the systolic time intervals and foetus circulatory impedance.
Resumo:
Satellite remote sensing has proved to be an effective support in timely detection and monitoring of marine oil pollution, mainly due to illegal ship discharges. In this context, we have developed a new methodology and technique for optical oil spill detection, which make use of MODIS L2 and MERIS L1B satellite top of atmosphere (TOA) reflectance imagery, for the first time in a highly automated way. The main idea was combining wide swaths and short revisit times of optical sensors with SAR observations, generally used in oil spill monitoring. This arises from the necessity to overcome the SAR reduced coverage and long revisit time of the monitoring area. This can be done now, given the MODIS and MERIS higher spatial resolution with respect to older sensors (250-300 m vs. 1 km), which consents the identification of smaller spills deriving from illicit discharge at sea. The procedure to obtain identifiable spills in optical reflectance images involves removal of oceanic and atmospheric natural variability, in order to enhance oil-water contrast; image clustering, which purpose is to segment the oil spill eventually presents in the image; finally, the application of a set of criteria for the elimination of those features which look like spills (look-alikes). The final result is a classification of oil spill candidate regions by means of a score based on the above criteria.
Resumo:
3D video-fluoroscopy is an accurate but cumbersome technique to estimate natural or prosthetic human joint kinematics. This dissertation proposes innovative methodologies to improve the 3D fluoroscopic analysis reliability and usability. Being based on direct radiographic imaging of the joint, and avoiding soft tissue artefact that limits the accuracy of skin marker based techniques, the fluoroscopic analysis has a potential accuracy of the order of mm/deg or better. It can provide fundamental informations for clinical and methodological applications, but, notwithstanding the number of methodological protocols proposed in the literature, time consuming user interaction is exploited to obtain consistent results. The user-dependency prevented a reliable quantification of the actual accuracy and precision of the methods, and, consequently, slowed down the translation to the clinical practice. The objective of the present work was to speed up this process introducing methodological improvements in the analysis. In the thesis, the fluoroscopic analysis was characterized in depth, in order to evaluate its pros and cons, and to provide reliable solutions to overcome its limitations. To this aim, an analytical approach was followed. The major sources of error were isolated with in-silico preliminary studies as: (a) geometric distortion and calibration errors, (b) 2D images and 3D models resolutions, (c) incorrect contour extraction, (d) bone model symmetries, (e) optimization algorithm limitations, (f) user errors. The effect of each criticality was quantified, and verified with an in-vivo preliminary study on the elbow joint. The dominant source of error was identified in the limited extent of the convergence domain for the local optimization algorithms, which forced the user to manually specify the starting pose for the estimating process. To solve this problem, two different approaches were followed: to increase the optimal pose convergence basin, the local approach used sequential alignments of the 6 degrees of freedom in order of sensitivity, or a geometrical feature-based estimation of the initial conditions for the optimization; the global approach used an unsupervised memetic algorithm to optimally explore the search domain. The performances of the technique were evaluated with a series of in-silico studies and validated in-vitro with a phantom based comparison with a radiostereometric gold-standard. The accuracy of the method is joint-dependent, and for the intact knee joint, the new unsupervised algorithm guaranteed a maximum error lower than 0.5 mm for in-plane translations, 10 mm for out-of-plane translation, and of 3 deg for rotations in a mono-planar setup; and lower than 0.5 mm for translations and 1 deg for rotations in a bi-planar setups. The bi-planar setup is best suited when accurate results are needed, such as for methodological research studies. The mono-planar analysis may be enough for clinical application when the analysis time and cost may be an issue. A further reduction of the user interaction was obtained for prosthetic joints kinematics. A mixed region-growing and level-set segmentation method was proposed and halved the analysis time, delegating the computational burden to the machine. In-silico and in-vivo studies demonstrated that the reliability of the new semiautomatic method was comparable to a user defined manual gold-standard. The improved fluoroscopic analysis was finally applied to a first in-vivo methodological study on the foot kinematics. Preliminary evaluations showed that the presented methodology represents a feasible gold-standard for the validation of skin marker based foot kinematics protocols.
Resumo:
In the field of vibration qualification testing, with the popular Random Control mode of shakers, the specimen is excited by random vibrations typically set in the form of a Power Spectral Density (PSD). The corresponding signals are stationary and Gaussian, i.e. featuring a normal distribution. Conversely, real-life excitations are frequently non-Gaussian, exhibiting high peaks and/or burst signals and/or deterministic harmonic components. The so-called kurtosis is a parameter often used to statistically describe the occurrence and significance of high peak values in a random process. Since the similarity between test input profiles and real-life excitations is fundamental for qualification test reliability, some methods of kurtosis-control can be implemented to synthesize realistic (non-Gaussian) input signals. Durability tests are performed to check the resistance of a component to vibration-based fatigue damage. A procedure to synthesize test excitations which starts from measured data and preserves both the damage potential and the characteristics of the reference signals is desirable. The Fatigue Damage Spectrum (FDS) is generally used to quantify the fatigue damage potential associated with the excitation. The signal synthesized for accelerated durability tests (i.e. with a limited duration) must feature the same FDS as the reference vibration computed for the component’s expected lifetime. Current standard procedures are efficient in synthesizing signals in the form of a PSD, but prove inaccurate if reference data are non-Gaussian. This work presents novel algorithms for the synthesis of accelerated durability test profiles with prescribed FDS and a non-Gaussian distribution. An experimental campaign is conducted to validate the algorithms, by testing their accuracy, robustness, and practical effectiveness. Moreover, an original procedure is proposed for the estimation of the fatigue damage potential, aiming to minimize the computational time. The research is thus supposed to improve both the effectiveness and the efficiency of excitation profile synthesis for accelerated durability tests.