2 resultados para FeMo cofactor (FeMoco) and P-cluster
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
During my PhD we focused on different research projects concerning the synthesis and characterization of new rhodium carbonyl clusters. More specifically, we studied the reactivity between Rh4(CO)12 and different bidentate phosphines, obtaining seven different species: Rh4(CO)10(dppe), Rh4(CO)8(dppe)2, Rh4(CO)10(dppf), {Rh4(CO)10(dpp-hexane)}2, {Rh4(CO)10(t-dppe)}2, Rh2(CO)2(dppf)2 and Rh4(CO)9(μ2-dppe)(μ1-dppeO). The reactivity of [Rh7(CO)16]3- with [AuCl4]- and Au(Et2S)Cl led to the formation of seven bimetallic clusters, of which four new ones, namely [Rh16Au6(CO)36]6-, [Rh10Au(CO)26]3-, [Rh16Au6(CO)36]4-, [Rh16Au6(CO)36]5-, [Rh22Au3(CO)47]5-, [Rh19Au5(CO)40]4- and [Rh20Au7(CO)45]5-. The reactivity of [Rh16Au6(CO)36]6- and [Rh10Au(CO)26]3- was studied as well. The reactivity of [Rh7(CO)16]3- with AgBF4, AgNO3 and with Pt(Et2S)2Cl2 was investigated, yielding only to the already known [Rh6N(CO)15]-, [PtRh5(CO)15]- and [PtRh4(CO)14]2- compounds. [Rh7(CO)16]3- war reacted with SnCl2·2H2O in acetone obtaining [Rh7Sn4Cl10(CO)14]5-, and [Rh12Sn(CO)23Cl2]4- was reacted with H+ obtaining [Rh18Sn3Cl2(CO)44]4-. Reactivity of [Rh7(CO)16]3- with InCl3 resulted in the isolation of [Rh12In(CO)28]3- and [Rh11In3(CO)25Cl2]3-, already known in our research lab, and the new [HRh11In(CO)26]3-. Moreover, a more straightforward synthesis for [Rh6InCl3(CO)15]2- was found, and this also led to the isolation of the [Rh6InCl2(DMF)(CO)15]-. The recover or rhodium as valuable carbonyl compound was also studied, and starting from a mixture of by-products it was possible to obtain the starting material [Rh7(CO)16]3-.
Resumo:
The principle aim of this study was to investigate biological predictors of response and resistance to multiple myeloma treatment. Two hypothesis had been proposed as responsible of responsiveness: SNPs in DNA repair and Folate pathway, and P-gp dependent efflux. As a first objective, panel of SNPs in DNA repair and Folate pathway genes, were analyzed. It was a retrospective study in a group of 454, previously untreated, MM patients enrolled in a randomized phase III open-label study. Results show that some SNPs in Folate pathway are correlated with response to MM treatment. MTR genotype was associated with favorable response in the overall population of MM patients. However, this relation, disappear after adjustment for treatment response. When poor responder includes very good partial response, partial response and stable/progressive disease MTFHR rs1801131 genotype was associated with poor response to therapy. This relation - unlike in MTR – was still significant after adjustment for treatment response. Identification of this genetic variant in MM patients could be used as an independent prognostic factor for therapeutic outcome in the clinical practice. In the second objective, basic disposition characteristics of bortezomib was investigated. We demonstrated that bortezomib is a P-gp substrate in a bi-directional transport study. We obtain apparent permeability rate values that together with solubility values can have a crucial implication in better understanding of bortezomib pharmacokinetics with respect to the importance of membrane transporters. Subsequently, in view of the importance of P-gp for bortezomib responsiveness a panel of SNPs in ABCB1 gene - coding for P-gp - were analyzed. In particular we analyzed five SNPs, none of them however correlated with treatment responsiveness. However, we found a significant association between ABCB1 variants and cytogenetic abnormalities. In particular, deletion of chromosome 17 and t(4;14) translocation were present in patients harboring rs60023214 and rs2038502 variants respectively.