2 resultados para Faunal vocalisation
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
During recent decades, the health of ocean ecosystems and fish populations has been threatened by overexploitation, pollution, and anthropogenic-driven climate change. Due to a lack of long-term data, we have a poor understanding of when intensive exploitation began and what impact anthropogenic activities have had on the ecology and evolution of fishes. Such information is crucial to recover degraded and depleted marine ecosystems and fish populations, maximise their productivity in-line with historical levels, and predict their future dynamics. In this thesis, I evaluate anthropogenic impacts on the iconic Atlantic bluefin tuna (Thunnus thynnus; BFT), one of the longest and recently most intensely exploited marine fishes, with a tremendous cultural and economic importance. Using a long-time series of archaeological and archived faunal remains (bones) dating back to approximately two millennia ago, I apply morphological, isotopic, and genomic techniques to perform the first studies on long-term BFT size and growth, diet and habitat use, and demography and adaptation, and produce the first genome-wide data on this species. My findings suggest that exploitation had impacted BFT foraging behaviour by the ~16th century when coastal ecosystem degradation induced a pelagic shift in diet and habitat use. I reveal that BFT biomass began to decline much earlier than hitherto documented, by the 19th century, consistent with intensive tuna trap catches during this period and catch-at-size increasing. I find that BFT juvenile growth had increased by the early 1900s (and more dramatically by the 21st century) which may reflect an evolutionary response to size selective harvest–which I find putative genomic signatures of. Further, I observed that BFT foraging behaviours have been modified following overexploitation during the 20th century, which previously included a isotopically distinct, Black Sea niche. Finally, I show that despite biomass declining from centuries ago, BFT has retained genomic diversity.
Resumo:
The exploitation of hydrocarbon reservoirs by the oil and gas industries represents one of the most relevant and concerning anthropic stressor in various marine areas worldwide and the presence of extractive structures can have severe consequences on the marine environment. Environmental monitoring surveys are carried out to monitor the effects and impacts of offshore energy facilities. Macrobenthic communities, inhabiting the soft-bottom, represent a key component of these surveys given their great responsiveness to natural and anthropic changes. A comprehensive collection of monitoring data from four Italian seas was used to investigate distributional pattern of macrozoobenthos assemblages confirming a high spatial variability in relation to the environmental variables analyzed. Since these datasets could represent a powerful tool for the industrial and scientific research, the steps and standardized procedures needed to obtain robust and comparable high-quality data were investigated and outlined. Over recent years, decommissioning of old platforms is a growing topic in this sector, involving many actors in the various decision-making processes. A Multi-Criteria Decision Analysis, specific for the Adriatic Sea, was developed to investigate the impacts of decommissioning of a gas platform on environmental and socio-economic aspects, to select the best decommissioning scenario. From the scenarios studied, the most impacting one has resulted to be total removal, affecting all the faunal component considered in the study. Currently, the European nations are increasing the production of energy from offshore wind farms with an exponential expansion. A comparative study of methodologies used five countries of the North Sea countries was carried out to investigate the best approaches to monitor the effects of wind farms on the benthic communities. In the foreseeable future, collaboration between industry, scientific communities, national and international policies are needed to gain knowledge concerning the effects of these industrial activities on the ecological status of the ecosystems.