2 resultados para Failure (mechanical)

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research proposes a solution for integrating RFID - Radio Frequency Identification technology within a structure based on CFRPs - Carbon Fiber Reinforced Polymers. Therefore, the main objective is to use technology to monitor and track composite components during manufacturing and service life. The study can be divided into two macro-areas. The first portion of the research evaluates the impact of the composite materials used on transmitting the electromagnetic signal to and from the tag. RFID technology communicates through radio frequencies to to track and trace items associated with the tags. In the first instance, a feasibility study was carried out to assess using commercially available tags. Then, after evaluating different solutions, it was decided to incorporate the tags into coupons during production. The second portion of the research is focused on evaluating the impact on the composite material's resistance to tag embedding. It starts with designing tensile test specimens through the FEM model with different housing configurations. Subsequently, the best configuration was tested in the facilities of the In the Faculty of Aerospace Engineering at TU Delft, particularly in the Structure & Materials Laboratory, two tests were conducted: the first one based on ASTM D3039/D3039 - 14 - Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, the second one dividing the path to failure into failure intervals in a load-unload-reload. Both tests were accompanied by instruments such as DIC, AE, C-Scan and Optical Microscopes. The expected result of the inclusion of RFID tags in composite components is that it brings added value to the parts with which it is associated without affecting too much its mechanical properties. This comes first from the automatic identification of RFID during the production cycle and its useful life. As a result, improvements were made in the design of production facilities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, the seismic vulnerability of existing masonry buildings has been underscored by the destructive impacts of earthquakes. Therefore, Fibre Reinforced Cementitious Matrix (FRCM) retrofitting systems have gained prominence due to their high strength-to-weight ratio, compatibility with substrates, and potential reversibility. However, concerns linger regarding the durability of these systems when subjected to long-term environmental conditions. This doctoral dissertation addressed these concerns by studying the effects of mild temperature variations on three FRCM systems, featuring basalt, glass, and aramid fibre textiles with lime-based mortar matrices. The study subjected various specimens, including mortar triplets, bare textile specimens, FRCM coupons, and single-lap direct shear wallets, to thermal exposure. A novel approach utilizing embedded thermocouple sensors facilitated efficient monitoring and active control of the conditioning process. A shift in the failure modes was obtained in the single lap-direct shear tests, alongside a significant impact on tensile capacity for both textiles and FRCM coupons. Subsequently, bond tests results were used to indirectly calibrate an analytical approach based on mode-II fracture mechanics. A comparison between Cohesive Material Law (CML) functions at various temperatures was conducted for each of the three systems, demonstrating a good agreement between the analytical model and experimental curves. Furthermore, the durability in alkaline environment of two additional FRCM systems, characterized by basalt and glass fibre textiles with lime-based mortars, was studied through an extensive experimental campaign. Tests conducted on single yarn and textile specimens after exposure at different durations and temperatures revealed a significant impact on tensile capacity. Additionally, FRCM coupons manufactured with conditioned textile were tested to understand the influence of aged textile and curing environment on the final tensile behavior. These results contributed significantly to the existing knowledge on FRCM systems and could be used to develop a standardized alkaline testing protocol, still lacking in the scientific literature.