11 resultados para Factor-receptor-alpha

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of agents targeting EGFR represents a new frontier in colon cancer therapy. Among these, monoclonal antibodies (mAbs) and EGFR tyrosine kinase inhibitors (TKIs) seemed to be the most promising. However they have demonstrated low utility in therapy, the former being effective at toxic doses, the latter resulting inefficient in colon cancer. This thesis work presents studies on a new EGFR inhibitor, FR18, a molecule containing the same naphtoquinone core as shikonin, an agent with great anti-tumor potential. In HT-29, a human colon carcinoma cell line, flow cytometry, immunoprecipitation, and Western blot analysis, confocal spectral microscopy have demonstrated that FR18 is active at concentrations as low as 10 nM, inhibits EGF binding to EGFR while leaving unperturbed the receptor kinase activity. At concentration ranging from 30 nM to 5 μM, it activates apoptosis. FR18 seems therefore to have possible therapeutic applications in colon cancer. In addition, surface plasmon resonance (SPR) investigation of the direct EGF/EGFR complex interaction using different experimental approaches is presented. A commercially available purified EGFR was immobilised by amine coupling chemistry on SPR sensor chip and its interaction to EGF resulted to have a KD = 368 ± 0.65 nM. SPR technology allows the study of biomolecular interactions in real-time and label-free with a high degree of sensitivity and specificity and thus represents an important tool for drug discovery studies. On the other hand EGF/EGFR complex interaction represents a challenging but important system that can lead to significant general knowledge about receptor-ligand interactions, and the design of new drugs intended to interfere with EGFR binding activity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Transcription is controlled by promoter-selective transcriptional factors (TFs), which bind to cis-regulatory enhancers elements, termed hormone response elements (HREs), in a specific subset of genes. Regulation by these factors involves either the recruitment of coactivators or corepressors and direct interaction with the basal transcriptional machinery (1). Hormone-activated nuclear receptors (NRs) are well characterized transcriptional factors (2) that bind to the promoters of their target genes and recruit primary and secondary coactivator proteins which possess many enzymatic activities required for gene expression (1,3,4). In the present study, using single-cell high-resolution fluorescent microscopy and high throughput microscopy (HTM) coupled to computational imaging analysis, we investigated transcriptional regulation controlled by the estrogen receptor alpha (ERalpha), in terms of large scale chromatin remodeling and interaction with the associated coactivator SRC-3 (Steroid Receptor Coactivator-3), a member of p160 family (28) primary coactivators. ERalpha is a steroid-dependent transcriptional factor (16) that belongs to the NRs superfamily (2,3) and, in response to the hormone 17-ß estradiol (E2), regulates transcription of distinct target genes involved in development, puberty, and homeostasis (8,16). ERalpha spends most of its lifetime in the nucleus and undergoes a rapid (within minutes) intranuclear redistribution following the addition of either agonist or antagonist (17,18,19). We designed a HeLa cell line (PRL-HeLa), engineered with a chromosomeintegrated reporter gene array (PRL-array) containing multicopy hormone response-binding elements for ERalpha that are derived from the physiological enhancer/promoter region of the prolactin gene. Following GFP-ER transfection of PRL-HeLa cells, we were able to observe in situ ligand dependent (i) recruitment to the array of the receptor and associated coregulators, (ii) chromatin remodeling, and (iii) direct transcriptional readout of the reporter gene. Addition of E2 causes a visible opening (decondensation) of the PRL-array, colocalization of RNA Polymerase II, and transcriptional readout of the reporter gene, detected by mRNA FISH. On the contrary, when cells were treated with an ERalpha antagonist (Tamoxifen or ICI), a dramatic condensation of the PRL-array was observed, displacement of RNA Polymerase II, and complete decreasing in the transcriptional FISH signal. All p160 family coactivators (28) colocalize with ERalpha at the PRL-array. Steroid Receptor Coactivator-3 (SRC-3/AIB1/ACTR/pCIP/RAC3/TRAM1) is a p160 family member and a known oncogenic protein (4,34). SRC-3 is regulated by a variety of posttranslational modifications, including methylation, phosphorylation, acetylation, ubiquitination and sumoylation (4,35). These events have been shown to be important for its interaction with other coactivator proteins and NRs and for its oncogenic potential (37,39). A number of extracellular signaling molecules, like steroid hormones, growth factors and cytokines, induce SRC-3 phosphorylation (40). These actions are mediated by a wide range of kinases, including extracellular-regulated kinase 1 and 2 (ERK1-2), c-Jun N-terminal kinase, p38 MAPK, and IkB kinases (IKKs) (41,42,43). Here, we report SRC-3 to be a nucleocytoplasmic shuttling protein, whose cellular localization is regulated by phosphorylation and interaction with ERalpha. Using a combination of high throughput and fluorescence microscopy, we show that both chemical inhibition (with U0126) and siRNA downregulation of the MAP/ERK1/2 kinase (MEK1/2) pathway induce a cytoplasmic shift in SRC-3 localization, whereas stimulation by EGF signaling enhances its nuclear localization by inducing phosphorylation at T24, S857, and S860, known partecipants in the regulation of SRC-3 activity (39). Accordingly, the cytoplasmic localization of a non-phosphorylatable SRC-3 mutant further supports these results. In the presence of ERalpha, U0126 also dramatically reduces: hormone-dependent colocalization of ERalpha and SRC-3 in the nucleus; formation of ER-SRC-3 coimmunoprecipitation complex in cell lysates; localization of SRC-3 at the ER-targeted prolactin promoter array (PRL-array) and transcriptional activity. Finally, we show that SRC-3 can also function as a cotransporter, facilitating the nuclear-cytoplasmic shuttling of estrogen receptor. While a wealth of studies have revealed the molecular functions of NRs and coregulators, there is a paucity of data on how these functions are spatiotemporally organized in the cellular context. Technically and conceptually, our findings have a new impact upon evaluating gene transcriptional control and mechanisms of action of gene regulators.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The biological complexity of NGF action is achieved by binding two distinct Neurotrophin receptors, TrkA and p75NTR. While several reports have provided lines of evidence on the interaction between TrkA and p75NTR at the plasma membrane, much fewer data are available on the consequence of such an interaction in terms of intracellular signaling. In this study, we have focused on how p75NTR may affect TrkA downstream signaling with respect to neuronal differentiation. Here, we have shown that cooperation between p75NTR and TrkA results in an increased NGF-mediated TrkA autophosphorylation, leads to a sustained activation of ERK1/2 and accelerates neurite outgrowth. Interestingly, neurite outgrowth is concomitant with a selective enhancement of the AP-1 activity and the transcriptional activation of genes such as GAP-43 and p21(CIP/WAF), known to be involved in the differentiation process. Collectively, our results unveil a functional link between the specific expression profile of neurotrophin receptors in neuronal cells and the NGF-mediated regulation of the differentiation process possibly through a persistent ERKs activation and the selective control of the AP-1 activity. In our studies we discuss the functional role of the neurotrophin receptor p75NTR and TrkA in a ligand-dependent signal transduction. It is known that p75NTR is also involved in the mediation of cell death ligand dependent. Here we show for the first time that the membrane receptor p75NTR, upon binding to b- Amyloid (Ab) peptide, is able to transduce a cytotoxic signal through a mechanism very similar to the one adopted by Tumor Necrosis Factor Receptor 1 (TNFR1), when activated by TNFa. We define that in neuroblastoma cell line Ab cytotoxicity signals through a pathway depending on p75NTR death domain (DD), mostly through some specific conserved residues. We identified that TRADD is the first interactor recruiting to the membrane and activates JNK and NF-kB transcription factors. Since Ab is defined as the most important aetiologic element associated with the Alzheimer’s Disease (AD), characterization of the mechanism involved in the mediation of the neurodegeneration can suggest also new therapeutic approaches.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Herpes simplex virus 1 (HSV-1) infects oral epitelial cells, then spreads to the nerve endings and estabilishes latency in sensory ganglia, from where it may, or may not reactivate. Diseases caused by virus reactivation include mild diseases such as muco-cutaneous lesions, and more severe, and even life-threatening encephalitis, or systemic infections affecting diverse organs. Herpes simplex virus represents the most comprehensive example of virus receptor interaction in Herpesviridae family, and the prototype virus encoding multipartite entry genes. In fact, it encodes 11-12 glycoproteins and a number of additional membrane proteins: five of these proteins play key roles in virus entry into subsceptible cells. Thus, glycoprotein B (gB) and glycoprotein C (gC) interact with heparan sulfate proteoglycan to enable initial attachment to cell surfaces. In the next step, in the entry cascade, gD binds a specific surface receptor such as nectin1 or HVEM. The interaction of glycoprotein D with the receptor alters the conformation of gD to enable the activation of gB, glycoprotein H, and glycoprotein L, a trio of glycoproteins that execute the fusion of the viral envelope with the plasma membrane. In this thesis, I described two distinct projects: I. The retargeting of viral tropism for the design of oncolytic Herpesviruses: • capable of infecting cells through the human epitelial growth factor receptor 2 (HER2), overexpressed in highly malignant mammary and ovarian tumors and correlates with a poor prognosis; • detargeted from its natural receptors, HVEM and nectin1. To this end, we inserted a ligand to HER2 in gD. Because HER2 has no natural ligand, the selected ligand was a single chain antibody (scFv) derived from MAb4D5 (monoclonal antibody to HER2), herein designated scHER2. All recombinant viruses were targeted to HER2 receptor, but only two viruses (R-LM113 and R-LM249) were completely detargeted from HVEM and nectin1. To engineer R-LM113, we removed a large portion at the N-terminus of gD (from aa 6 to aa 38) and inserted scHER2 sequence plus 9-aa serine-glycine flexible linker at position 39. On the other hand, to engineer R-LM249, we replaced the Ig-folded core of gD (from aa 61 to aa 218) with scHER2 flanked by Ser-Gly linkers. In summary, these results provide evidence that: i. gD can tolerate an insert almost as big as gD itself; ii. the Ig-like domain of gD can be removed; iii. the large portion at the N-terminus of gD (from aa 6 to aa 38) can be removed without loss of key function; iv. R-LM113 and R-LM249 recombinants are ready to be assayed in animal models of mammary and ovary tumour. This finding and the avaibility of a large number of scFv greatly increase the collection of potential receptors to which HSV can be redirected. II. The production and purification of recombinant truncated form of the heterodimer gHgL. We cloned a stable insect cell line expressing a soluble form of gH in complex with gL under the control of a metalloprotein inducible promoter and purified the heterodimer by means of ONE-STrEP-tag system by IBA. With respect to biological function, the purified heterodimer is capable: • of reacting to antibodies that recognize conformation dependent epitopes and neutralize virion infectivity; • of binding a variety cells at cell surface. No doubt, the availability of biological active purified gHgL heterodimer, in sufficient quantities, will speed up the efforts to solve its crystal structure and makes it feasible to identify more clearly whether gHgL has a cellular partner, and what is the role of this interaction on virus entry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction Phospholipase Cb1 (PLC-β1) is a key player in the regulation of nuclear inositol lipid signaling and of a wide range of cellular functions, such as proliferation and differentiation (1,2,3). PLCb1 signaling depends on the cleavage of phosphatidylinositol 4,5-bisphosphate and the formation of the second messengers diacylglycerol and Inositol tris-phosphate which activate canonical protein kinase C (cPKC) isoforms. Here we describe a proteomic approach to find out a potential effector of nuclear PLC-b1 dependent signaling during insulin stimulated myogenic differentiation. Methods Nuclear lysates obtained from insulin induced C2C12 myoblasts were immunoprecipitated with anti-phospho-substrate cPKC antibody. Proteins, stained with Comassie blue, were excised, digested and subsequently analysed in LC-MS/MS. For peptide sequence searching, the mass spectra were processed and analyzed using the Mascot MS/MS ion search program with the NCBI database. Western blotting, GST-pull down and co-immunoprecipitation were performed to study the interaction between eEF1A2 and cPKCs. Site direct mutagenesis was performed to confirm the phosphorylated motif recognized by the antibody. Immunofluorescence analysis, GFP-tagged eEF1A2 vector and subcellular fractionation were performed to study nuclear localization and relative distribution of eEF1A2. Results We have previously shown that PLC-β1 is greatly increased at the nuclear level during insulin-induced myoblasts differentiation and that this nuclear localization is essential for induction of differentiation. Thus, nuclear proteins of insulin stimulated C2C12 myoblasts, were immunoprecipitated with an anti-phospho-substrate cPKC antibody. After Electrophoretic gel separation of proteins immunoprecipitated, several molecules were identified by LC-MS/MS. Among these most relevant and unexpected was eukaryotic elongation factor 1 alpha 2 (eEF1A2). We found that eEF1A2 is phosphorylated by PKCb1 and that these two molecules coimmunolocalized at the nucleolar level. eEF1A2 could be phosphorylated in many sites among which both threonine and serine residues. By site direct mutagenesis we demonstrated that it is the serine residue of the motif recognized by the antibody that is specifically phosphorylated by PKCb1. The silencing of PLCb1 gives rise to a reduction of expression and phosphorylation levels of eEF1A2 indicating this molecule as a target of nuclear PLCb1 regulatory network during myoblasts differentiation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Basal-like tumor is an aggressive breast carcinoma subtype that displays an expression signature similar to that of the basal/myoepithelial cells of the breast tissue. Basal-like carcinoma are characterized by over-expression of the Epidermal Growth Factor receptor (EGFR), high frequency of p53 mutations, cytoplasmic/nuclear localization of beta-catenin, overexpression of the Hypoxia inducible factor (HIF)-1alpha target Carbonic Anhydrase isoenzime 9 (CA9) and a gene expression pattern similar to that of normal and cancer stem cells, including the over-expression of the mammary stem cell markers CD44. In this study we investigated the role of p53, EGFR, beta-catenin and HIF-1alpha in the regulation of stem cell features and genes associated with the basal-like gene expression profile. The findings reported in this investigation indicate that p53 inactivation in ductal breast carcinoma cells leads to increased EGFR mRNA and protein levels. In our experimental model, EGFR overexpression induces beta-catenin cytoplasmatic stabilization and transcriptional activity and, by that, leads to increased aggressive features including mammosphere (MS) forming and growth capacity, invasive potential and overexpression of the mammary stem cell gene CD44. Moreover we found that EGFR/beta-catenin axis promotes hypoxia survival in breast carcinoma cells via increased CA9 expression. Indeed beta-catenin positively regulates CA9 expression upon hypoxia exposure. Interestingly we found that beta-catenin inhibits HIF-1alpha transcriptional activity. Looking for the mechanism, we found that CA9 expression is promoted by HIF-1alpha and cytoplasmatic beta-catenin further increased it post-transcriptionally, via direct mRNA binding and stabilization. These data reveal a functional beta-catenin/HIF-1alpha interplay among hallmarks of basal-like tumors and unveil a new functional role for cytoplasmic beta-catenin in the phenotype of such tumors. Therefore it can be proposed that the interplay here described among EGFR/beta-catenin and HIF-1alpha may play a role in breast cancer stem cell survival and function.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: MPLC represents a diagnostic challenge. Topic of the discussion is how to distinguish these patients as a metastatic or a multifocal disease. While in case of the different histology there are less doubt on the opposite in case of same histology is mandatory to investigate on other clinical features to rule out this question. Matherials and Methods: A retrospective review identified all patients treated surgically for a presumed diagnosis of SPLC. Pre-operative staging was obtained with Total CT scan and fluoro-deoxy positron emission tomography and mediastinoscopy. Patients with nodes interest or extra-thoracic location were excluded from this study. Epidermal growth factor receptor (EGFR) expression with complete immunohistochemical analisis was evaluated. Survival was estimated using Kaplan-Meyer method, and clinical features were estimated using a long-rank test or Cox proportional hazards model for categorical and continuous variable, respectively. Results: According to American College Chest Physician, 18 patients underwent to surgical resection for a diagnosis of MPLC. Of these, 8 patients had 3 or more nodules while 10 patients had less than 3 nodules. Pathologic examination demonstrated that 13/18(70%) of patients with multiple histological types was Adenocarcinoma, 2/18(10%) Squamous carcinoma, 2/18(10%) large cell carcinoma and 1/18(5%) Adenosquamosu carcinoma. Expression of EGFR has been evaluated in all nodules: in 7 patients of 18 (38%) the percentage of expression of each nodule resulted different. Conclusions: MPLC represent a multifocal disease where interactions of clinical informations with biological studies reinforce the diagnosis. EGFR could contribute to differentiate the nodules. However, further researches are necessary to validate this hypothesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hypoxia-inducible factor-1 alpha (HIF-1α) plays a critical role in survival and is associated with poor prognosis in solid tumors. The role of HIF-1α in multiple myeloma is not completely known. In the present study, we explored the effect of EZN2968, an locked nucleic acid antisense oligonucleotide against HIF-1α, as a molecular target in MM. A panel of MM cell lines and primary samples from MM patients were cultured in vitro in the presence of EZN2968 . Under normoxia culture condition, HIF-1α mRNA and protein expression was detectable in all MM cell lines and in CD138+ cells from newly diagnosed MM patients samples. Significant up-regulation of HIF-1α protein expression was observed after incubation with IL6 or IGF-I, confirming that HIF-1α can be further induced by biological stimuli. EZN2968 efficiently induces a selective and stable down-modulation of HIF-1α and decreased the secretion of VEGF released by MM cell. Treatment with EZN2968 gave rise to a progressive accumulation of cells in the S and subG0 phase. The analysis of p21, a cyclin-dependent kinase inhibitors controlling cell cycle check point, shows upregulation of protein levels. These results suggest that HIF-1α inhibition is sufficient for cell cycle arrest in normoxia, and for inducing an apoptotic pathways.. In the presence of bone marrow microenvironment, HIF-1α inhibition blocks MAPK kinase pathway and secretion of pro-surviaval cytokines ( IL6,VEGF,IL8) In this study we provide evidence that HIF-1α, even in the absence of hypoxia signal, is expressed in MM plasma cells and further inducible by bone marrow milieu stimuli; moreover its inhibition is sufficient to induce a permanent cell cycle arrest. Our data support the hypothesis that HIF-1α inhibition may suppress tumor growth by preventing proliferation of plasma cells through p21 activation and blocking pro-survival stimuli from bone marrow microenvironment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oncolytic virotherapy exploits the ability of viruses to infect and kill cells. It is suitable as treatment for tumors that are not accessible by surgery and/or respond poorly to the current therapeutic approach. HSV is a promising oncolytic agent. It has a large genome size able to accommodate large transgenes and some attenuated oncolytic HSVs (oHSV) are already in clinical trials phase I and II. The aim of this thesis was the generation of HSV-1 retargeted to tumor-specific receptors and detargeted from HSV natural receptors, HVEM and Nectin-1. The retargeting was achieved by inserting a specific single chain antibody (scFv) for the tumor receptor selected inside the HSV glycoprotein gD. In this research three tumor receptors were considered: epidermal growth factor receptor 2 (HER2) overexpressed in 25-30% of breast and ovarian cancers and gliomas, prostate specific membrane antigen (PSMA) expressed in prostate carcinomas and in neovascolature of solid tumors; and epidermal growth factor receptor variant III (EGFRvIII). In vivo studies on HER2 retargeted viruses R-LM113 and R-LM249 have demonstrated their high safety profile. For R-LM249 the antitumor efficacy has been highlighted by target-specific inhibition of the growth of human tumors in models of HER2-positive breast and ovarian cancer in nude mice. In a murine model of HER2-positive glioma in nude mice, R-LM113 was able to significantly increase the survival time of treated mice compared to control. Up to now, PSMA and EGFRvIII viruses (R-LM593 and R-LM613) are only characterized in vitro, confirming the specific retargeting to selected targets. This strategy has proved to be generally applicable to a broad spectrum of receptors for which a single chain antibody is available.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cross Reacting Material 197(CRM197) is a Diphteria toxin non toxic mutant that had shown anti-tumor activity in mice and humans. CRM197 is utilized as a specific inhibitor of heparin-binding epidermal growth factor (HB-EGF), that competes for the epidermal growth factor receptor (EGFR), overexpressed in colorectal cancer and implicated in its progression. We evaluated the effects of CRM197 on HT-29 human colon cancer cell line behaviour and, for CRM197 recognized ability to inhibit HB-EGF, its possible effects on EGFR activation. In particular, while HT-29 does not show any reduction of viability after CRM197 treatment, or changes in cell cycle distribution, in EGFR localization or activation, they show a change in gene expression profile analyzed by microarray. This is the first study where the CRM197 treatment on HT-29 show the alteration of a specific and selected number of genes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Disregolazioni dei recettori tirosinchinasici (RTK) sono di frequente riscontro nei tumori dell’uomo e in molti casi sono indicatori biologici che permettono di definire in maniera più accurata la prognosi dei pazienti. Possono rappresentare inoltre marker predittivi per la risposta a terapie antitumorali con farmaci a bersaglio molecolare. Numerosi inibitori tirosinchinasici (TKI) sono attualmente in corso di studio o già disponibili per l’utilizzo in oncologia umana, e molti di questi hanno dimostrato una significativa efficacia utilizzati singolarmente o in combinazione a terapie convenzionali. Studi recenti indicano che un quadro analogo di disregolazione dei recettori tirosinchinasici è presente anche nelle neoplasie dei piccoli animali, e ne suggeriscono in molti casi un’implicazione prognostica. Gli inibitori tirosinchinasi sono da poco entrati nell’arena dell’oncologia veterinaria, ma i primi risultati lasciano supporre che siano destinati ad essere integrati definitivamente nei protocolli terapeutici standard. La tesi consiste in una parte introduttiva in cui sono trattate le principali funzioni biologiche dei recettori tirosinchinasici, la loro struttura e il loro ruolo nell’oncogenesi e nella progressione tumorale in medicina umana e veterinaria. Si affrontano inoltre le principali metodiche di laboratorio per l’analisi molecolare in oncologia e i meccanismi d’azione dei farmaci inibitori tirosinchinasici, con un cenno ai prodotti maggiormente utilizzati e alle loro indicazioni. Segue la presentazione e la discussione dei risultati di quattro studi relativi alla valutazione delle disregolazioni del recettore tirosinchinasico Kit (espressione aberrante e mutazioni genomiche) nel mastocitoma cutaneo del gatto e del recettore del fattore di crescita epidermico (EGFR) nel carcinoma squamocellulare cutaneo del gatto e nei tumori polmonari primitivi del cane, con particolare attenzione al loro ruolo prognostico.