6 resultados para Facilities layout and line balancing
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Advanced cell cultures are developing rapidly in biomedical research. Nowadays, various approaches and technologies are being used, however, these culturing systems present limitations from increasing complexity, requiring high costs, and not easily customization. We present two versatile and cost-effective methods for developing culturing systems that integrate 3D cell culture and microfluidic platforms. Firstly, for drug screening applications, many high-quality cell spheres of homogeneous size and shape are required. Conventional approaches usually have a dearth of control over the size and geometry of cell spheres and require sample collection and manipulation. To overcome this difficulty, in this study, hundreds of spheroids of several cell lines were generated using multi-well plates that housed our microdevices. Tumor spheroids grow at a uniform rate (in scaffolded or scaffold-free environments) and can be harvested at will. Microscopy imaging are done in real time during or after the culture. After in situ immunostaining, fluorescence imaging can be conducted while keeping the spatial distribution of spheroids in the microwells. Drug effects were successfully observed through viability, growth, and morphologic investigations. Also, we fabricated a microfluidic device suitable for directed and selective cell culture treatments. The microfluidic device was used to reproduce and confirm in vitro investigations carried out using normal culture methods, using a microglia cell line. The device layout and the syringe pump system, entirely designed in our lab, successfully allowed culture growth and medium flow regulation. Solution flows can be finely controlled, allowing treatments and immunofluorescence in one single chamber selectively. To conclude, we propose the development of two culturing platforms (microstructured well devices and in-flow microfluidic chip), which are the result of separate scientific investigations but have the primary goal of performing treatments in a reproducible manner. Our devices shall improve future studies on drug exposure testing, representing adjustable and versatile cell culture systems.
Resumo:
The increasing aversion to technological risks of the society requires the development of inherently safer and environmentally friendlier processes, besides assuring the economic competitiveness of the industrial activities. The different forms of impact (e.g. environmental, economic and societal) are frequently characterized by conflicting reduction strategies and must be holistically taken into account in order to identify the optimal solutions in process design. Though the literature reports an extensive discussion of strategies and specific principles, quantitative assessment tools are required to identify the marginal improvements in alternative design options, to allow the trade-off among contradictory aspects and to prevent the “risk shift”. In the present work a set of integrated quantitative tools for design assessment (i.e. design support system) was developed. The tools were specifically dedicated to the implementation of sustainability and inherent safety in process and plant design activities, with respect to chemical and industrial processes in which substances dangerous for humans and environment are used or stored. The tools were mainly devoted to the application in the stages of “conceptual” and “basic design”, when the project is still open to changes (due to the large number of degrees of freedom) which may comprise of strategies to improve sustainability and inherent safety. The set of developed tools includes different phases of the design activities, all through the lifecycle of a project (inventories, process flow diagrams, preliminary plant lay-out plans). The development of such tools gives a substantial contribution to fill the present gap in the availability of sound supports for implementing safety and sustainability in early phases of process design. The proposed decision support system was based on the development of a set of leading key performance indicators (KPIs), which ensure the assessment of economic, societal and environmental impacts of a process (i.e. sustainability profile). The KPIs were based on impact models (also complex), but are easy and swift in the practical application. Their full evaluation is possible also starting from the limited data available during early process design. Innovative reference criteria were developed to compare and aggregate the KPIs on the basis of the actual sitespecific impact burden and the sustainability policy. Particular attention was devoted to the development of reliable criteria and tools for the assessment of inherent safety in different stages of the project lifecycle. The assessment follows an innovative approach in the analysis of inherent safety, based on both the calculation of the expected consequences of potential accidents and the evaluation of the hazards related to equipment. The methodology overrides several problems present in the previous methods proposed for quantitative inherent safety assessment (use of arbitrary indexes, subjective judgement, build-in assumptions, etc.). A specific procedure was defined for the assessment of the hazards related to the formations of undesired substances in chemical systems undergoing “out of control” conditions. In the assessment of layout plans, “ad hoc” tools were developed to account for the hazard of domino escalations and the safety economics. The effectiveness and value of the tools were demonstrated by the application to a large number of case studies concerning different kinds of design activities (choice of materials, design of the process, of the plant, of the layout) and different types of processes/plants (chemical industry, storage facilities, waste disposal). An experimental survey (analysis of the thermal stability of isomers of nitrobenzaldehyde) provided the input data necessary to demonstrate the method for inherent safety assessment of materials.
Resumo:
Historical evidence shows that chemical, process, and Oil&Gas facilities where dangerous substances are stored or handled are target of deliberate malicious attacks (security attacks) aiming at interfering with normal operations. Physical attacks and cyber-attacks may generate events with consequences on people, property, and the surrounding environment that are comparable to those of major accidents caused by safety-related causes. The security aspects of these facilities are commonly addressed using Security Vulnerability/Risk Assessment (SVA/SRA) methodologies. Most of these methodologies are semi-quantitative and non-systematic approaches that strongly rely on expert judgment, leading to security assessments that are not reproducible. Moreover, they do not consider the synergies with the safety domain. The present 3-year research is aimed at filling the gap outlined by providing knowledge on security attacks, as well as rigorous and systematic methods supporting existing SVA/SRA studies suitable for the chemical, process, and Oil&Gas industry. The different nature of cyber and physical attacks resulted in the development of different methods for the two domains. The first part of the research was devoted to the development and statistical analysis of security databases that allowed to develop new knowledge and lessons learnt on security threats. Based on the obtained background, a Bow-Tie based procedure and two reverse-HazOp based methodologies were developed as hazard identification approaches for physical and cyber threats respectively. To support the quantitative estimation of the security risk, a quantitative procedure based on the Bayesian Network was developed allowing to calculate the probability of success of physical security attacks. All the developed methods have been applied to case studies addressing chemical, process and Oil&Gas facilities (offshore and onshore) proving the quality of the results that can be achieved in improving site security. Furthermore, the outcomes achieved allow to step forward in developing synergies and promoting integration among safety and security management.
Resumo:
The gastrointestinal tract (GIT) represents the major portion of the body that interfaces with the external environment, with the double function of food processing and line of defense of the body. Numerous components support and regulate the barrier function of the GIT, such as tight junctions (TJs), cytokines, commensal and pathogenic microorganisms, and other systems of the organism, as the endocannabinoid system (ECS). The ECS can control several gastrointestinal functions, as well as the regulation of intestinal inflammation. Failure of the intestinal barrier function triggers an increase of the concentration of pro-inflammatory cytokines and leads to a reduction in intestinal functionality. This thesis aimed to explore the potential of natural compounds as a new alternative approach to antibiotics not only as antimicrobial, but also supporting intestinal maturation and integrity, and as immune-boosting agents. Different experiments were performed to evaluate the potential of nature-identical compounds (NICs), organic acids (OAs), and essential oils (EOs) to support and fight various stressful stimuli. In vitro, a well characterized blend of NICs and OAs were able to improve TJs and transepithelial electrical resistance (TEER) in an intestinal cell line, exerting an anti-inflammatory potential. EOs enhanced TEER and TJs mRNA levels, with a reduction of paracellular permeability, showing antioxidant and antimicrobial properties. In vivo, thymol modulates the gene expression of ECS and gut chemosensing in the GIT of piglets, where the precise localization of the cannabinoid receptors was immunohistochemically confirmed, suggesting an anti-inflammatory potential. In conclusion, natural alternative molecules represent an effective alternative to support or replace the classical pharmacological prophylaxis. These alternative molecules act not only as antimicrobial agents, but also exerted a crucial role in supporting the intestinal barrier function, preventing oxidative stress, and reducing inflammation. Moreover, thymol seems able to modulate the ECS, representing a novel frontier to support animal health and productivity.
Resumo:
The study presented in this work deals with the investigation of the effects produced by two common techniques of static balancing on the dynamic performances of closed-chain linkages, taking into account the compliance of the mechanism components. The long-term goal of the research consists in determining an optimal balancing strategy for parallel spatial manipulators. The present contribution is a starting point and it focuses on the planar four-bar linkage, intended as the simplest example of closed-chain mechanism. The elastodynamic behaviour of an unbalanced four-bar linkage and two balanced ones, respectively obtained by mass and elastic balancing, is investigated by means of both numerical simulations and experimental tests. The purpose of this work is to obtain preliminary results, to be refined and broadened in future developments
Resumo:
L’Inserimento Eterofamigliare Supportato di Adulti (IESA) sofferenti di disturbi psichici consiste nell’accogliere persone in cura presso i servizi psichiatrici territoriali, nel proprio domicilio, integrandole nelle proprie relazioni famigliari. Obiettivo è migliorare la qualità di vita dell’utente e favorirne l’integrazione nella comunità. Obiettivo. Valutare gli esiti dello IESA, con un disegno di ricerca longitudinale, considerando: psicopatologia, benessere psicologico, funzionamento sociale e familiare. Metodologia. 40 soggetti: 20 pazienti e 20 ospitanti. La valutazione clinica è stata effettuata all’inizio della convivenza e al follow-up di 1, 3, 6 e 12 mesi. Strumenti utilizzati: BPRS, VGF, PWB, SQ, FAD. Analisi statistica: Modello Lineare Generale (GLM) con l’Analisi della Varianza per prove ripetute e calcolo dell’effect-size. Risultati. 15 pazienti maschi e 5 femmine, 17 italiani. 11 soddisfano i criteri diagnostici (DSM-IV-TR) per schizofrenia e disturbi psicotici, 5 per i disturbi dell’umore e 4 per i disturbi di personalità. Dopo l’inserimento 3 sono stati i ricoveri e 4 le visite psichiatriche urgenti. 8 pazienti modificano/diminuiscono la terapia e 3 la sospendono. Aumenta il benessere psicologico (PWB); diminuiscono i sintomi psicopatologici (BPRS ed SQ) e migliora il funzionamento globale (VFG). Il gruppo dei famigliari composto da 11 uomini e 9 donne, 19 di nazionalità italiana; con età media di 55 anni. 8 sono coniugati, 6 celibi/nubili, 4 divorziati e 2 vedovi. 9 hanno figli, 11 lavorano e 8 sono pensionati. Nei famigliari aumenta il benessere psicologico (PWB), migliora il funzionamento famigliare (FAD) e la valutazione del funzionamento globale (VGF) rimane costante nel tempo. Discussioni e conclusioni. Il progetto IESA sembra migliorare la psicopatologia, con una diminuzione dei comportamenti maladattativi e un aumento delle capacità relazionali dell’ospite favorendone l’integrazione. Inoltre, lo IESA sembra diminuire i costi della cronicità psichiatrica: diminuzione degli accessi al Pronto Soccorso, delle visite psichiatriche urgenti e delle giornate di ricovero.