9 resultados para FLUORESCENCE ENHANCEMENT
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
In this thesis the application of biotechnological processes based on microbial metabolic degradation of halogenated compound has been investigated. Several studies showed that most of these pollutants can be biodegraded by single bacterial strains or mixed microbial population via aerobic direct metabolism or cometabolism using as a growth substrates aromatic or aliphatic hydrocarbons. The enhancement of two specific processes has been here object of study in relation with its own respective scenario described as follow: 1st) the bioremediation via aerobic cometabolism of soil contaminated by a high chlorinated compound using a mixed microbial population and the selection and isolation of consortium specific for the compound. 2nd) the implementation of a treatment technology based on direct metabolism of two pure strains at the exact point source of emission, preventing dilution and contamination of large volumes of waste fluids polluted by several halogenated compound minimizing the environmental impact. In order to verify the effect of these two new biotechnological application to remove halogenated compound and purpose them as a more efficient alternative continuous and batch tests have been set up in the experimental part of this thesis. Results obtained from the continuous tests in the second scenario have been supported by microbial analysis via Fluorescence in situ Hybridisation (FISH) and by a mathematical model of the system. The results showed that both process in its own respective scenario offer an effective solutions for the biological treatment of chlorinate compound pollution.
Resumo:
Nucleic acid biosensors represent a powerful tool for clinical and environmental pathogens detection. For applications such as point-of-care biosensing, it is fundamental to develop sensors that should be automatic, inexpensive, portable and require a professional skill of the user that should be as low as possible. With the goal of determining the presence of pathogens when present in very small amount, such as for the screening of pathogens in drinking water, an amplification step must be implemented. Often this type of determinations should be performed with simple, automatic and inexpensive hardware: the use of a chemical (or nanotechnological) isothermal solution would be desirable. My Ph.D. project focused on the study and on the testing of four isothermal reactions which can be used to amplify the nucleic acid analyte before the binding event on the surface sensor or to amplify the signal after that the hybridization event with the probe. Recombinase polymerase amplification (RPA) and ligation-mediated rolling circle amplification (L-RCA) were investigated as methods for DNA and RNA amplification. Hybridization chain reaction (HCR) and Terminal deoxynucleotidil transferase-mediated amplification were investigated as strategies to achieve the enhancement of the signal after the surface hybridization event between target and probe. In conclusion, it can be said that only a small subset of the biochemical strategies that are proved to work in solution towards the amplification of nucleic acids does truly work in the context of amplifying the signal of a detection system for pathogens. Amongst those tested during my Ph.D. activity, recombinase polymerase amplification seems the best candidate for a useful implementation in diagnostic or environmental applications.
Resumo:
The identification of people by measuring some traits of individual anatomy or physiology has led to a specific research area called biometric recognition. This thesis is focused on improving fingerprint recognition systems considering three important problems: fingerprint enhancement, fingerprint orientation extraction and automatic evaluation of fingerprint algorithms. An effective extraction of salient fingerprint features depends on the quality of the input fingerprint. If the fingerprint is very noisy, we are not able to detect a reliable set of features. A new fingerprint enhancement method, which is both iterative and contextual, is proposed. This approach detects high-quality regions in fingerprints, selectively applies contextual filtering and iteratively expands like wildfire toward low-quality ones. A precise estimation of the orientation field would greatly simplify the estimation of other fingerprint features (singular points, minutiae) and improve the performance of a fingerprint recognition system. The fingerprint orientation extraction is improved following two directions. First, after the introduction of a new taxonomy of fingerprint orientation extraction methods, several variants of baseline methods are implemented and, pointing out the role of pre- and post- processing, we show how to improve the extraction. Second, the introduction of a new hybrid orientation extraction method, which follows an adaptive scheme, allows to improve significantly the orientation extraction in noisy fingerprints. Scientific papers typically propose recognition systems that integrate many modules and therefore an automatic evaluation of fingerprint algorithms is needed to isolate the contributions that determine an actual progress in the state-of-the-art. The lack of a publicly available framework to compare fingerprint orientation extraction algorithms, motivates the introduction of a new benchmark area called FOE (including fingerprints and manually-marked orientation ground-truth) along with fingerprint matching benchmarks in the FVC-onGoing framework. The success of such framework is discussed by providing relevant statistics: more than 1450 algorithms submitted and two international competitions.
Resumo:
The primary goals of this study were to develop a cell-free in vitro assay for the assessment of nonthermal electromagnetic (EMF) bioeffects and to develop theoretical models in accord with current experimental observations. Based upon the hypothesis that EMF effects operate by modulating Ca2+/CaM binding, an in vitro nitric oxide (NO) synthesis assay was developed to assess the effects of a pulsed radiofrequency (PRF) signal used for treatment of postoperative pain and edema. No effects of PRF on NO synthesis were observed. Effects of PRF on Ca2+/CaM binding were also assessed using a Ca2+-selective electrode, also yielding no EMF Ca2+/CaM binding. However, a PRF effect was observed on the interaction of hemoglobin (Hb) with tetrahydrobiopterin, leading to the development of an in vitro Hb deoxygenation assay, showing a reduction in the rate of Hb deoxygenation for exposures to both PRF and a static magnetic field (SMF). Structural studies using pyranine fluorescence, Gd3+ vibronic sideband luminescence and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy were conducted in order to ascertain the mechanism of this EMF effect on Hb. Also, the effect of SMF on Hb oxygen saturation (SO2) was assessed under gas-controlled conditions. These studies showed no definitive changes in protein/solvation structure or SO2 under equilibrium conditions, suggesting the need for real-time instrumentation or other means of observing out-of-equilibrium Hb dynamics. Theoretical models were developed for EMF transduction, effects on ion binding, neuronal spike timing, and dynamics of Hb deoxygenation. The EMF sensitivity and simplicity of the Hb deoxygenation assay suggest a new tool to further establish basic biophysical EMF transduction mechanisms. If an EMF-induced increase in the rate of deoxygenation can be demonstrated in vivo, then enhancement of oxygen delivery may be a new therapeutic method by which clinically relevant EMF-mediated enhancement of growth and repair processes can occur.
Resumo:
The subject of the present thesis is about the enhancement of orbiter spacecraft navigation capabilities obtained by the standard radiometric link, taking advantage of an imaging payload and making use of a novel definition of optical measurements. An ESA Mission to Mercury called BepiColombo, was selected as a reference case for this study, and in particular its Mercury Planetary Orbiter (MPO), because of the presence of SIMBIO-SYS, an instrument suite part of the MPO payload, capable of acquiring high resolution images of the surface of Mercury. The use of optical measurements for navigation, can provide complementary informations with respect to Doppler, for enhanced performances or a relaxation of the radio tracking requisites in term of ground station schedule. Classical optical techniques based on centroids, limbs or landmarks, were the base to a novel idea for optical navigation, inspired by concepts of stereoscopic vision. In brief, the relation between two overlapped images acquired by a nadir pointed orbiter spacecraft at different times, was defined, and this information was then formulated into an optical measurement, to be processed by a navigation filter. The formulation of this novel optical observable is presented, moreover the analysis of the possible impact on the mission budget and images scheduling is addressed. Simulations are conducted using an orbit determination software already in use for spacecraft navigation in which the proposed optical measurements were implemented and the final results are given.
Resumo:
Marine sediments are the main accumulation reservoir of organic recalcitrant pollutants such as polychlorinated biphenyls (PCBs). In the anoxic conditions typical of these sediments, anaerobic bacteria of the phylum Chloroflexi are able to attack these compounds in a process called microbial reductive dechlorination. Such activity and members of this phylum were detected in PCB-impacted sediments of the Venice Lagoon. The aim of this work was to investigate microbial reductive dechlorination and design bioremediation approaches for marine sediments of the area. Three out of six sediment cultures from different sampling areas exhibited dechlorination activities in the same conditions of the site and two phylotypes (VLD-1 and VLD-2) were detected and correlated to this metabolism. Biostimulation was tested on enriched dechlorinating sediment cultures from the same site using five different electron donors, of which lactate was the best biostimulating agent; complementation of microbial and chemical dechlorination catalyzed by biogenic zerovalent Pd nanoparticles was not effective due to sulfide poisoning of the catalyst. A new biosurfactant-producing strain of Shewanella frigidimarina was concomitantly obtained from hydrocarbon-degrading marine cultures and selected because of the low toxicity of its product. All these findings were then exploited to develop bioremediation lab-scale tests in shaken reactors and static microcosms on real sediments and water of the Venice lagoon, testing i) a bioaugmentation approach, with a selected enriched sediment culture from the same area, ii) a biostimulation approach with lactate as electron donor, iii) a bioavailability enhancement with the supplementation of the newly-discovered biosurfactant, and iv) all possible combinations of the afore-mentioned approaches. The best bioremediation approach resulted to be a combination of bioaugmentation and bioremediation and it could be a starting point to design bioremediation process for actual marine sediments of the Venice Lagoon area.
Resumo:
The aim of this thesis is to develop a depth analysis of the inductive power transfer (or wireless power transfer, WPT) along a metamaterial composed of cells arranged in a planar configuration, in order to deliver power to a receiver sliding on them. In this way, the problem of the efficiency strongly affected by the weak coupling between emitter and receiver can be obviated, and the distance of transmission can significantly be increased. This study is made using a circuital approach and the magnetoinductive wave (MIW) theory, in order to simply explain the behavior of the transmission coefficient and efficiency from the circuital and experimental point of view. Moreover, flat spiral resonators are used as metamaterial cells, particularly indicated in literature for WPT metamaterials operating at MHz frequencies (5-30 MHz). Finally, this thesis presents a complete electrical characterization of multilayer and multiturn flat spiral resonators and, in particular, it proposes a new approach for the resistance calculation through finite element simulations, in order to consider all the high frequency parasitic effects. Multilayer and multiturn flat spiral resonators are studied in order to decrease the operating frequency down to kHz, maintaining small external dimensions and allowing the metamaterials to be supplied by electronic power converters (resonant inverters).