4 resultados para FIELD GEL-ELECTROPHORESIS

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

From September 2005 to December 2006, in order to define the prevalence of Helicobacter pullorum in broiler chickens, laying hens and turkey, a total of 365 caecum contents of animals reared in 76 different farms were collected at the slaughterhouse. A caecum content of a ostrich was also sampled. In addition, with the aim of investigating the occurrence of H. pullorum in humans, 151 faeces were collected at the Sant’Orsola-Malpighi University Hospital of Bologna from patients suffering of gastroenteritis. A modified Steele–McDermott membrane filter method was used. Gram-negative curved rod bacteria were preliminary identified as H. pullorum by a PCR assay based on 16S rRNA, then subjected to a RFLP-PCR assay to distinguish between H. pullorum and H. canadensis. One isolate from each farm was randomly selected for phenotypic characterization by biochemical methods and 1D SDSPAGE analysis of whole cell proteins profiles. Minimum Inhibitory Concentration (MIC) for seven different antibiotics were also determined by agar dilution method. Moreover, to examine the intraspecific genomic variability, two strains isolated from 17 different farms were submitted to genotyping by Pulse-Field Gel Electrophoresis (PFGE). In order to assess the molecular basis of fluorquinolone resistance in H. pullorum, gyrA of H. pullorum CIP 104787T was sequenced and nucleotide sequences of the Quinolone Resistance Determining Region (QRDR) of a total of 18 poultry isolates, with different MIC values for ciprofloxacin and nalidixic acid, were compared. According to the PCR and PCR-RFLP results, 306 out of 366 animals examined were positive for H. pullorum (83,6%) and 96,1% of farms resulted infected. All positive samples showed a high number of colonies (>50) phenotipically consistent with H. pullorum on the first isolation media, which suggests that this microrganism, when present, colonizes the poultry caecum at an elevate load. No human sample resulted positive for H. pullorum. The 1D SDS-PAGE whole protein profile analysis showed high similarity among the 74 isolates tested and with the type strain H. pullorum CIP 104787T. Regarding the MIC values, a monomodal distribution was found for ampicillin, chloramphenicol, gentamicin and nalidixic acid, whereas a bimodal trend was noticed for erythromycin, ciprofloxacin and tetracycline (indicating an acquired resistance for these antibiotics). Applying the breakpoints indicated by the CSLI, we may assume that all the H. pullorum tested are sensitive only to gentamicin. The intraspecific genomic variability observed in this study confirm that this species don’t have a clonal population structure, as motioned by other autors. The 2490 bp gyrA gene of H. pullorum CIP104787T with an Open Reading Frame (ORF) encoding a polypeptide of 829 amino acids was for the first time sequenced and characterized. All ciprofloxacin resistant poultry isolates showed ACA®ATA (Thr®Ile) substitution at codon 84 of gyrA corresponding to codons of gyrA 86, 87 and 83 of the Campylobacter jejuni, H. pylori and Escherichia coli, respectively. This substitution was functionally confirmed to be associated with the ciprofloxacin resistant phenotype of poultry isolates. This is the first report of isolation of H. pullorum in turkey and in ostrich, indicating that poultry species are the reservoir of this potential zoonotic microorganisms. In order to understand the potential role as food-borne human pathogen of H. pullorum, further studies must be carried on.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although nickel is a toxic metal for living organisms in its soluble form, its importance in many biological processes recently emerged. In this view, the investigation of the nickel-dependent enzymes urease and [NiFe]-hydrogenase, especially the mechanism of nickel insertion into their active sites, represent two intriguing case studies to understand other analogous systems and therefore to lead to a comprehension of the nickel trafficking inside the cell. Moreover, these two enzymes have been demonstrated to ensure survival and colonization of the human pathogen H. pylori, the only known microorganism able to proliferate in the gastric niche. The right nickel delivering into the urease active site requires the presence of at least four accessory proteins, UreD, UreE, UreF and UreG. Similarly, analogous process is principally mediated by HypA and HypB proteins in the [NiFe]-hydrogenase system. Indeed, HpHypA and HpHypB also have been proposed to act in the activation of the urease enzyme from H. pylori, probably mobilizing nickel ions from HpHypA to the HpUreE-HpUreG complex. A complete comprehension of the interaction mechanism between the accessory proteins and the crosstalk between urease and hydrogenase accessory systems requires the determination of the role of each protein chaperone that strictly depends on their structural and biochemical properties. The availability of HpUreE, HpUreG and HpHypA proteins in a pure form is a pre-requisite to perform all the subsequent protein characterizations, thus their purification was the first aim of this work. Subsequently, the structural and biochemical properties of HpUreE were investigated using multi-angle and quasi-elastic light scattering, as well as NMR and circular dichroism spectroscopy. The thermodynamic parameters of Ni2+ and Zn2+ binding to HpUreE were principally established using isothermal titration calorimetry and the importance of key histidine residues in the process of binding metal ions was studied using site-directed mutagenesis. The molecular details of the HpUreE-HpUreG and HpUreE-HpHypA protein-protein assemblies were also elucidated. The interaction between HpUreE and HpUreG was investigated using ITC and NMR spectroscopy, and the influence of Ni2+ and Zn2+ metal ions on the stabilization of this association was established using native gel electrophoresis, light scattering and thermal denaturation scanning followed by CD spectroscopy. Preliminary HpUreE-HpHypA interaction studies were conducted using ITC. Finally, the possible structural architectures of the two protein-protein assemblies were rationalized using homology modeling and docking computational approaches. All the obtained data were interpreted in order to achieve a more exhaustive picture of the urease activation process, and the correlation with the accessory system of the hydrogenase enzyme, considering the specific role and activity of the involved protein players. A possible function for Zn2+ in the chaperone network involved in Ni2+ trafficking and urease activation is also envisaged.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pharmaceuticals are useful tools to prevent and treat human and animal diseases. Following administration, a significant fraction of pharmaceuticals is excreted unaltered into faeces and urine and may enter the aquatic ecosystem and agricultural soil through irrigation with recycled water, constituting a significant source of emerging contaminants into the environment. Understanding major factors influencing their environmental fate is consequently needed to value the risk, reduce contamination, and set up bioremediation technologies. The antiviral drug Tamiflu (oseltamivir carboxylate, OC) has received recent attention due to the potential use as a first line defence against H5N1 and H1N1 influenza viruses. Research has shown that OC is not removed during conventional wastewater treatments, thus having the potential to enter surface water bodies. A series of laboratory experiments investigated the fate and the removal of OC in surface water systems in Italy and Japan and in a municipal wastewater treatment plant. A preliminary laboratory study investigated the persistence of the active antiviral drug in water samples from an irrigation canal in northern Italy (Canale Emiliano Romagnolo). After an initial rapid decrease, OC concentration slowly decreased during the remaining incubation period. Approximately 65% of the initial OC amount remained in water at the end of the 36-day incubation period. A negligible amount of OC was lost both from sterilized water and from sterilized water/sediment samples, suggesting a significant role of microbial degradation. Stimulating microbial processes by the addition of sediments resulted in reduced OC persistence. Presence of OC (1.5 μg mL-1) did not significantly affect the metabolic potential of the water microbial population, that was estimated by glyphosate and metolachlor mineralization. In contrast, OC caused an initial transient decrease in the size of the indigenous microbial population of water samples. A second laboratory study focused on basic processes governing the environmental fate of OC in surface water from two contrasting aquatic ecosystems of northern Italy, the River Po and the Venice Lagoon. Results of this study confirmed the potential of OC to persist in surface water. However, the addition of 5% of sediments resulted in rapid OC degradation. The estimated half-life of OC in water/sediment of the River Po was 15 days. After three weeks of incubation at 20 °C, more than 8% of 14C-OC evolved as 14CO2 from water/sediment samples of the River Po and Venice Lagoon. OC was moderately retained onto coarse sediments from the two sites. In water/sediment samples of the River Po and Venice Lagoon treated with 14C-OC, more than 30% of the 14C-residues remained water-extractable after three weeks of incubation. The low affinity of OC to sediments suggests that the presence of sediments would not reduce its bioavailability to microbial degradation. Another series of laboratory experiments investigated the fate and the removal of OC in two surface water ecosystems of Japan and in the municipal wastewater treatment plant of the city of Bologna, in Northern Italy. The persistence of OC in surface water ranged from non-detectable degradation to a half-life of 53 days. After 40 days, less than 3% of radiolabeled OC evolved as 14CO2. The presence of sediments (5%) led to a significant increase of OC degradation and of mineralization rates. A more intense mineralization was observed in samples of the wastewater treatment plant when applying a long incubation period (40 days). More precisely, 76% and 37% of the initial radioactivity applied as 14C-OC was recovered as 14CO2 from samples of the biological tank and effluent water, respectively. Two bacterial strains growing on OC as sole carbon source were isolated and used for its removal from synthetic medium and environmental samples, including surface water and wastewater. Inoculation of water and wastewater samples with the two OC-degrading strains showed that mineralization of OC was significantly higher in both inoculated water and wastewater, than in uninoculated controls. Denaturing gradient gel electrophoresis and quantitative PCR analysis showed that OC would not affect the microbial population of surface water and wastewater. The capacity of the ligninolytic fungus Phanerochaete chrysosporium to degrade a wide variety of environmentally persistent xenobiotics has been largely reported in literature. In a series of laboratory experiments, the efficiency of a formulation using P. chrysosporium was evaluated for the removal of selected pharmaceuticals from wastewater samples. Addition of the fungus to samples of the wastewater treatment plant of Bologna significantly increased (P < 0.05) the removal of OC and three antibiotics, erythromycin, sulfamethoxazole, and ciprofloxacin. Similar effects were also observed in effluent water. OC was the most persistent of the four pharmaceuticals. After 30 days of incubation, approximately two times more OC was removed in bioremediated samples than in controls. The highest removal efficiency of the formulation was observed with the antibiotic ciprofloxacin. The studies included environmental aspects of soil contamination with two emerging veterinary contaminants, such as doramectin and oxibendazole, wich are common parasitic treatments in cattle farms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Alcune patologie dell’occhio come la retinopatia diabetica, il pucker maculare, il distacco della retina possono essere curate con un intervento di vitrectomia. I rischi associati all’intervento potrebbero essere superati ricorrendo alla vitrectomia enzimatica con plasmina in associazione o in sostituzione della vitrectomia convenzionale. Inoltre, l’uso di plasmina autologa eviterebbe problemi di rigetto. La plasmina si ottiene attivando il plasminogeno con enzimi quali l’attivatore tissutale (tPA) e l’urochinasi ( uPA ) . La purificazione del plasminogeno dal sangue avviene normalmente attraverso cromatografia di affinità con resina. Tuttavia, le membrane di affinità costituiscono un supporto ideale per questa applicazione poiché possono essere facilmente impaccate prima dell’intervento, permettendo la realizzazione di un dispositivo monouso che fornisce un processo rapido ed economico. Obiettivo di questo lavoro è la preparazione di membrane di affinità per la purificazione del plasminogeno utilizzando L-lisina come ligando di affinità. Per questo scopo sono state usate membrane in cellulosa rigenerata ad attivazione epossidica, modificate con due diversi protocolli per l’immobilizzazione di L-lisina. La densità ligando è stata misurata mediante un saggio colorimetrico che usa l’acido arancio 7 come indicatore. La resa di immobilizzazione è stata studiata in funzione del tempo di reazione e della concentrazione di L-lisina. Le membrane ottimizzate sono state caratterizzate con esperimenti dinamici usando siero bovino e umano, i risultati sono stati confrontati con quelli ottenuti in esperimenti paralleli condotti con una resina commerciale di affinità con L-lisina. Durante gli esperimenti con siero, le frazioni provenienti da ogni fase cromatografica sono state raccolte e analizzate con HPLC ed elettroforesi SDS-PAGE. In particolare, l’elettroforesi dei campioni eluiti presenta una banda del plasminogeno ben definita indicando che le membrane di affinità con L-lisina sono adatte alla purificazione del plasminogeno. Inoltre, è emerso che le membrane hanno maggiore produttività della resina commerciale di riferimento.