4 resultados para Experiential learning|vCase studies.
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The thesis of this paper is based on the assumption that the socio-economic system in which we are living is characterised by three great trends: growing attention to the promotion of human capital; extremely rapid technological progress, based above all on the information and communication technologies (ICT); the establishment of new production and organizational set-ups. These transformation processes pose a concrete challenge to the training sector, which is called to satisfy the demand for new skills that need to be developed and disseminated. Hence the growing interest that the various training sub-systems devote to the issues of lifelong learning and distance learning. In such a context, the so-called e-learning acquires a central role. The first chapter proposes a reference theoretical framework for the transformations that are shaping post-industrial society. It analyzes some key issues such as: how work is changing, the evolution of organizational set-ups and the introduction of learning organization, the advent of the knowledge society and of knowledge companies, the innovation of training processes, and the key role of ICT in the new training and learning systems. The second chapter focuses on the topic of e-learning as an effective training model in response to the need for constant learning that is emerging in the knowledge society. This chapter starts with a reflection on the importance of lifelong learning and introduces the key arguments of this thesis, i.e. distance learning (DL) and the didactic methodology called e-learning. It goes on with an analysis of the various theoretic and technical aspects of e-learning. In particular, it delves into the theme of e-learning as an integrated and constant training environment, characterized by customized programmes and collaborative learning, didactic assistance and constant monitoring of the results. Thus, all the aspects of e-learning are taken into exam: the actors and the new professionals, the virtual communities as learning subjects, the organization of contents in learning objects, the conformity to international standards, the integrated platforms and so on. The third chapter, which concludes the theoretic-interpretative part, starts with a short presentation of the state-of-the-art e-learning international market that aims to understand its peculiarities and its current trends. Finally, we focus on some important regulation aspects related to the strong impulse given by the European Commission first, and by the Italian governments secondly, to the development and diffusion of e-learning. The second part of the thesis (chapters 4, 5 and 6) focus on field research, which aims to define the Italian scenario for e-learning. In particular, we have examined some key topics such as: the challenges of training and the instruments to face such challenges; the new didactic methods and technologies for lifelong learning; the level of diffusion of e-learning in Italy; the relation between classroom training and online training; the main factors of success as well as the most critical aspects of the introduction of e-learning in the various learning environments. As far as the methodological aspects are concerned, we have favoured a qualitative and quantitative analysis. A background analysis has been done to collect the statistical data available on this topic, as well as the research previously carried out in this area. The main source of data is constituted by the results of the Observatory on e-learning of Aitech-Assinform, which covers the 2000s and four areas of implementation (firms, public administration, universities, school): the thesis has reviewed the results of the last three available surveys, offering a comparative interpretation of them. We have then carried out an in-depth empirical examination of two case studies, which have been selected by virtue of the excellence they have achieved and can therefore be considered advanced and emblematic experiences (a large firm and a Graduate School).
Resumo:
The goal of this thesis work is to develop a computational method based on machine learning techniques for predicting disulfide-bonding states of cysteine residues in proteins, which is a sub-problem of a bigger and yet unsolved problem of protein structure prediction. Improvement in the prediction of disulfide bonding states of cysteine residues will help in putting a constraint in the three dimensional (3D) space of the respective protein structure, and thus will eventually help in the prediction of 3D structure of proteins. Results of this work will have direct implications in site-directed mutational studies of proteins, proteins engineering and the problem of protein folding. We have used a combination of Artificial Neural Network (ANN) and Hidden Markov Model (HMM), the so-called Hidden Neural Network (HNN) as a machine learning technique to develop our prediction method. By using different global and local features of proteins (specifically profiles, parity of cysteine residues, average cysteine conservation, correlated mutation, sub-cellular localization, and signal peptide) as inputs and considering Eukaryotes and Prokaryotes separately we have reached to a remarkable accuracy of 94% on cysteine basis for both Eukaryotic and Prokaryotic datasets, and an accuracy of 90% and 93% on protein basis for Eukaryotic dataset and Prokaryotic dataset respectively. These accuracies are best so far ever reached by any existing prediction methods, and thus our prediction method has outperformed all the previously developed approaches and therefore is more reliable. Most interesting part of this thesis work is the differences in the prediction performances of Eukaryotes and Prokaryotes at the basic level of input coding when ‘profile’ information was given as input to our prediction method. And one of the reasons for this we discover is the difference in the amino acid composition of the local environment of bonded and free cysteine residues in Eukaryotes and Prokaryotes. Eukaryotic bonded cysteine examples have a ‘symmetric-cysteine-rich’ environment, where as Prokaryotic bonded examples lack it.
Resumo:
The aim of this thesis was to investigate the respective contribution of prior information and sensorimotor constraints to action understanding, and to estimate their consequences on the evolution of human social learning. Even though a huge amount of literature is dedicated to the study of action understanding and its role in social learning, these issues are still largely debated. Here, I critically describe two main perspectives. The first perspective interprets faithful social learning as an outcome of a fine-grained representation of others’ actions and intentions that requires sophisticated socio-cognitive skills. In contrast, the second perspective highlights the role of simpler decision heuristics, the recruitment of which is determined by individual and ecological constraints. The present thesis aims to show, through four experimental works, that these two contributions are not mutually exclusive. A first study investigates the role of the inferior frontal cortex (IFC), the anterior intraparietal area (AIP) and the primary somatosensory cortex (S1) in the recognition of other people’s actions, using a transcranial magnetic stimulation adaptation paradigm (TMSA). The second work studies whether, and how, higher-order and lower-order prior information (acquired from the probabilistic sampling of past events vs. derived from an estimation of biomechanical constraints of observed actions) interacts during the prediction of other people’s intentions. Using a single-pulse TMS procedure, the third study investigates whether the interaction between these two classes of priors modulates the motor system activity. The fourth study tests the extent to which behavioral and ecological constraints influence the emergence of faithful social learning strategies at a population level. The collected data contribute to elucidate how higher-order and lower-order prior expectations interact during action prediction, and clarify the neural mechanisms underlying such interaction. Finally, these works provide/open promising perspectives for a better understanding of social learning, with possible extensions to animal models.
Resumo:
The Alzheimer’s disease (AD), the most prevalent form of age-related dementia, is a multifactorial and heterogeneous neurodegenerative disease. The molecular mechanisms underlying the pathogenesis of AD are yet largely unknown. However, the etiopathogenesis of AD likely resides in the interaction between genetic and environmental risk factors. Among the different factors that contribute to the pathogenesis of AD, amyloid-beta peptides and the genetic risk factor apoE4 are prominent on the basis of genetic evidence and experimental data. ApoE4 transgenic mice have deficits in spatial learning and memory associated with inflammation and brain atrophy. Evidences suggest that apoE4 is implicated in amyloid-beta accumulation, imbalance of cellular antioxidant system and in apoptotic phenomena. The mechanisms by which apoE4 interacts with other AD risk factors leading to an increased susceptibility to the dementia are still unknown. The aim of this research was to provide new insights into molecular mechanisms of AD neurodegeneration, investigating the effect of amyloid-beta peptides and apoE4 genotype on the modulation of genes and proteins differently involved in cellular processes related to aging and oxidative balance such as PIN1, SIRT1, PSEN1, BDNF, TRX1 and GRX1. In particular, we used human neuroblastoma cells exposed to amyloid-beta or apoE3 and apoE4 proteins at different time-points, and selected brain regions of human apoE3 and apoE4 targeted replacement mice, as in vitro and in vivo models, respectively. All genes and proteins studied in the present investigation are modulated by amyloid-beta and apoE4 in different ways, suggesting their involvement in the neurodegenerative mechanisms underlying the AD. Finally, these proteins might represent novel potential diagnostic and therapeutic targets in AD.