2 resultados para Exercise therapy
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
PEMF are a medical and non-invasive therapy successfully used for clinical treatments of bone disease, due to the piezoelectric effect that improve bone mass and density, by the stimulation of osteoblastogenesis, with modulation of calcium storages and mineral metabolism. PEMF enhance tissue oxygenation, microcirculation and angiogenesis, in rats and cells erythrocytes, in cells-free assay. Such responses could be caused by a modulation of nitric oxide signal and interaction between PEMF and Ca2+/NO/cGMP/PKG signal. PEMF improve blood flow velocity of smallest vein without changing their diameter. PEMF therapy helpful in patients with diabetes, due to increased microcirculation trough enhance capillary blood velocity and diameter. We investigated the influence of stimulation on muscular activity, tissue oxygenation and pulmonary VO2, during exercise, on different intensity, as heavy or moderate, different subjects, as a athlete or sedentary, and different sport activity, as a cycling or weightlifting. In athletes, we observed a tendency for a greater change and a faster kinetic of HHb concentration. PEMF increased the velocity and the quantity of muscle O2 available, leading to accelerate the HHb kinetics. Stimulation induced a bulk muscle O2 availability and a greater muscle O2 extraction, leading to a reduced time delay of the HHb slow component. Stimulation increased the amplitude of muscle activity under different conditions, likely caused by the effect of PEMF on contraction mechanism of muscular fibers, by the change of membrane permeability and Ca2+ channel conduction. In athletes, we observed an increase of overall activity during warm-up. In sedentary people, stimulation increased the magnitude of muscle activity during moderate constant-load exercise and warm-up. In athletes and weightlifters, stimulation caused an increase of blood lactate concentration during exercise, confirming a possible influence of stimulation on muscle activity and on glycolytic metabolism of type-II muscular fibers.
Resumo:
Pulmonary arterial hypertension is a severe disease characterized by increasing in pulmonary vascular resistance leading to right ventricular failure and death. Currently available drugs for treatment of PAH act on three different pathways responsible of the pathogenesis of this disease: the endothelin pathway, the nitric oxide pathway and the prostacyclin pathway. The purpose of our study was to reassess our experience on the use of drugs that interact on the pathobiological line of prostacyclin so we retrospectively included all patients, referred to our center from February 1995 to December 2021, who received therapy with i.v. Epoprostenol, s.c. Treprostinil or oral Selexipag. Firstly, we observed that patients treated with Epoprostenol were significantly more compromised at baseline when compared to the two other groups and evaluating the effects of the three different drugs, it emerged that patients treated with Epoprostenol had significantly greater improvements in respect to those treated with Treprostinil and Selexipag. In the second part of our analysis we assessed the effects of these drugs when used as third line strategy in order to limit many confounding factors that could influence demographic, clinical and hemodynamic characteristics of patient populations. The differences emerged in exercise capacity and baseline hemodynamics reflect the fact that in our clinical practice, we add Epoprostenol as third line therapy in more compromised patients, Treprostinil in intermediate situations and Selexipag in less impaired conditions. Comparing the effects of treatments between baseline and first follow-up we noticed smaller benefits with Selexipag when compared with intravenous and subcutaneous strategies but it’s important to weight baseline patient’s differences. Our analysis confirmed clinical and functional benefits for the use of both prostacyclin analogues and prostacyclin receptor agonists in terms of improved functional class, six-minute walking distance and cardiopulmonary hemodynamics.