6 resultados para Evaluating and Selecting a Property Management System
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The preparation of conformationally hindered molecules and their study by DNMR and computational methods are my thesis’s core. In the first chapter, the conformations and the stereodynamics of symmetrically ortho-disubstituted aryl carbinols and aryl ethers are described. In the second chapter, the structures of axially chiral atropisomers of hindered biphenyl carbinols are studied. In the third chapter, the steric barriers and the -barrier of 1,8-di-aylbiphenylenes are determined. Interesting atropisomers are found in the cases of arylanthrones, arylanthraquinones and arylanthracenes and are reported in the fourth chapter. By the combined use of dynamic NMR, ECD spectroscopy and DFT computations, the conformations and the absolute configurations of 2-Naphthylalkylsulfoxides are studied in the fifth chapter. In the last chapter, a new synthetic route to ,’-arylated secondary or tertiary alcohols by lithiated O-benzyl-carbamates carrying an N-aryl substituent and DFT calculations to determinate the cyclic intermediate are reported. This work was done in the research group of Prof. Jonathan Clayden, at the University of Manchester.
Resumo:
The hierarchical organisation of biological systems plays a crucial role in the pattern formation of gene expression resulting from the morphogenetic processes, where autonomous internal dynamics of cells, as well as cell-to-cell interactions through membranes, are responsible for the emergent peculiar structures of the individual phenotype. Being able to reproduce the systems dynamics at different levels of such a hierarchy might be very useful for studying such a complex phenomenon of self-organisation. The idea is to model the phenomenon in terms of a large and dynamic network of compartments, where the interplay between inter-compartment and intra-compartment events determines the emergent behaviour resulting in the formation of spatial patterns. According to these premises the thesis proposes a review of the different approaches already developed in modelling developmental biology problems, as well as the main models and infrastructures available in literature for modelling biological systems, analysing their capabilities in tackling multi-compartment / multi-level models. The thesis then introduces a practical framework, MS-BioNET, for modelling and simulating these scenarios exploiting the potential of multi-level dynamics. This is based on (i) a computational model featuring networks of compartments and an enhanced model of chemical reaction addressing molecule transfer, (ii) a logic-oriented language to flexibly specify complex simulation scenarios, and (iii) a simulation engine based on the many-species/many-channels optimised version of Gillespie’s direct method. The thesis finally proposes the adoption of the agent-based model as an approach capable of capture multi-level dynamics. To overcome the problem of parameter tuning in the model, the simulators are supplied with a module for parameter optimisation. The task is defined as an optimisation problem over the parameter space in which the objective function to be minimised is the distance between the output of the simulator and a target one. The problem is tackled with a metaheuristic algorithm. As an example of application of the MS-BioNET framework and of the agent-based model, a model of the first stages of Drosophila Melanogaster development is realised. The model goal is to generate the early spatial pattern of gap gene expression. The correctness of the models is shown comparing the simulation results with real data of gene expression with spatial and temporal resolution, acquired in free on-line sources.
Resumo:
In the last decades the automotive sector has seen a technological revolution, due mainly to the more restrictive regulation, the newly introduced technologies and, as last, to the poor resources of fossil fuels remaining on Earth. Promising solution in vehicles’ propulsion are represented by alternative architectures and energy sources, for example fuel-cells and pure electric vehicles. The automotive transition to new and green vehicles is passing through the development of hybrid vehicles, that usually combine positive aspects of each technology. To fully exploit the powerful of hybrid vehicles, however, it is important to manage the powertrain’s degrees of freedom in the smartest way possible, otherwise hybridization would be worthless. To this aim, this dissertation is focused on the development of energy management strategies and predictive control functions. Such algorithms have the goal of increasing the powertrain overall efficiency and contextually increasing the driver safety. Such control algorithms have been applied to an axle-split Plug-in Hybrid Electric Vehicle with a complex architecture that allows more than one driving modes, including the pure electric one. The different energy management strategies investigated are mainly three: the vehicle baseline heuristic controller, in the following mentioned as rule-based controller, a sub-optimal controller that can include also predictive functionalities, referred to as Equivalent Consumption Minimization Strategy, and a vehicle global optimum control technique, called Dynamic Programming, also including the high-voltage battery thermal management. During this project, different modelling approaches have been applied to the powertrain, including Hardware-in-the-loop, and diverse powertrain high-level controllers have been developed and implemented, increasing at each step their complexity. It has been proven the potential of using sophisticated powertrain control techniques, and that the gainable benefits in terms of fuel economy are largely influenced by the chose energy management strategy, even considering the powerful vehicle investigated.
Resumo:
Several decision and control tasks involve networks of cyber-physical systems that need to be coordinated and controlled according to a fully-distributed paradigm involving only local communications without any central unit. This thesis focuses on distributed optimization and games over networks from a system theoretical perspective. In the addressed frameworks, we consider agents communicating only with neighbors and running distributed algorithms with optimization-oriented goals. The distinctive feature of this thesis is to interpret these algorithms as dynamical systems and, thus, to resort to powerful system theoretical tools for both their analysis and design. We first address the so-called consensus optimization setup. In this context, we provide an original system theoretical analysis of the well-known Gradient Tracking algorithm in the general case of nonconvex objective functions. Then, inspired by this method, we provide and study a series of extensions to improve the performance and to deal with more challenging settings like, e.g., the derivative-free framework or the online one. Subsequently, we tackle the recently emerged framework named distributed aggregative optimization. For this setup, we develop and analyze novel schemes to handle (i) online instances of the problem, (ii) ``personalized'' optimization frameworks, and (iii) feedback optimization settings. Finally, we adopt a system theoretical approach to address aggregative games over networks both in the presence or absence of linear coupling constraints among the decision variables of the players. In this context, we design and inspect novel fully-distributed algorithms, based on tracking mechanisms, that outperform state-of-the-art methods in finding the Nash equilibrium of the game.
Resumo:
The presented study aimed to evaluate the productive and physiological behavior of a 2D multileader apple training systems in the Italian environment both investigating the possibility to increase yield and precision crop load management resolution. Another objective was to find valuable thinning thresholds guaranteeing high yields and matching fruit market requirements. The thesis consists in three studies carried out in a Pink Lady®- Rosy Glow apple orchard trained as a planar multileader training system (double guyot). Fruiting leaders (uprights) dimension, crop load, fruit quality, flower and physiological (leaf gas exchanges and fruit growth rate) data were collected and analysed. The obtained results found that uprights present dependence among each other and as well as a mutual support during fruit development. However, individual upright fruit load and upright’s fruit load distribution on the tree (~ plant crop load) seems to define both upright independence from the other, and single upright crop load effects on the final fruit quality production. Correlations between fruit load and harvest fruit size were found and thanks to that valuable thinning thresholds, based on different vegetative parameters, were obtained. Moreover, it comes out that an upright’s fruit load random distribution presents a widening of those thinning thresholds, keeping un-altered fruit quality. For this reason, uprights resulted a partially physiologically-dependent plant unit. Therefore, if considered and managed as independent, then no major problems on final fruit quality and production occurred. This partly confirmed the possibility to shift crop load management to single upright. The finding of the presented studies together with the benefits coming from multileader planar training systems suggest a high potentiality of the 2D multileader training systems to increase apple production sustainability and profitability for Italian apple orchard, while easing the advent of automation in fruit production.
Resumo:
The general objective of this research is to explore theories and methodologies of sustainability indicators, environmental management and decision making disciplines with the operational purpose of producing scientific, robust and relevant information for supporting system understanding and decision making in real case studies. Several tools have been applied in order to increase the understanding of socio-ecological systems as well as providing relevant information on the choice between alternatives. These tools have always been applied having in mind the complexity of the issues and the uncertainty tied to the partial knowledge of the systems under study. Two case studies with specific application to performances measurement (environmental performances in the case of the K8 approach and sustainable development performances in the case of the EU Sustainable Development Strategy) and a case study about the selection of sustainable development indicators amongst Municipalities in Scotland, are discussed in the first part of the work. In the second part of the work, the common denominator among subjects consists in the application of spatial indices and indicators to address operational problems in land use management within the territory of the Ravenna province (Italy). The main conclusion of the thesis is that a ‘perfect’ methodological approach which always produces the best results in assessing sustainability performances does not exist. Rather, there is a pool of correct approaches answering different evaluation questions, to be used when methodologies fit the purpose of the analysis. For this reason, methodological limits and conceptual assumptions as well as consistency and transparency of the assessment, become the key factors for assessing the quality of the analysis.