10 resultados para Estimation Of Distribution Algorithms
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The objective of this work of thesis is the refined estimations of source parameters. To such a purpose we used two different approaches, one in the frequency domain and the other in the time domain. In frequency domain, we analyzed the P- and S-wave displacement spectra to estimate spectral parameters, that is corner frequencies and low frequency spectral amplitudes. We used a parametric modeling approach which is combined with a multi-step, non-linear inversion strategy and includes the correction for attenuation and site effects. The iterative multi-step procedure was applied to about 700 microearthquakes in the moment range 1011-1014 N•m and recorded at the dense, wide-dynamic range, seismic networks operating in Southern Apennines (Italy). The analysis of the source parameters is often complicated when we are not able to model the propagation accurately. In this case the empirical Green function approach is a very useful tool to study the seismic source properties. In fact the Empirical Green Functions (EGFs) consent to represent the contribution of propagation and site effects to signal without using approximate velocity models. An EGF is a recorded three-component set of time-histories of a small earthquake whose source mechanism and propagation path are similar to those of the master event. Thus, in time domain, the deconvolution method of Vallée (2004) was applied to calculate the source time functions (RSTFs) and to accurately estimate source size and rupture velocity. This technique was applied to 1) large event, that is Mw=6.3 2009 L’Aquila mainshock (Central Italy), 2) moderate events, that is cluster of earthquakes of 2009 L’Aquila sequence with moment magnitude ranging between 3 and 5.6, 3) small event, i.e. Mw=2.9 Laviano mainshock (Southern Italy).
Resumo:
Terrestrial radioactivity for most individual is the major contributor to the total dose and is mostly provided by 238U, 232Th and 40K radionuclides. In particular indoor radioactivity is principally due to 222Rn, a radioactive noble gas descendent of 238U, second cause of lung cancer after cigarettes smoking. Vulsini Volcanic District is a well known quaternary volcanic area located between the northern Latium and southern Tuscany (Central Italy). It is characterized by an high natural radiation background resulting from the high concentrations of 238U, 232Th and 40K in the volcanic products. In this context, subduction-related metasomatic enrichment of incompatible elements in the mantle source coupled with magma differentiation within the upper crust has given rise to U, Th and K enriched melts. Almost every ancient village and town located in this part of Italy has been built with volcanic rocks pertaining to the Vulsini Volcanic District. The radiological risk of living in this area has been estimated considering separately: a. the risk associated with buildings made of volcanic products and built on volcanic rock substrates b. the risk associated to soil characteristics. The former has been evaluated both using direct 222Rn indoor measurements and simulations of “standard rooms” built with the tuffs and lavas from the Vulsini Volcanic District investigated in this work. The latter has been carried out by using in situ measurements of 222Rn activity in the soil gases. A radon risk map for the Bolsena village has been developed using soil radon measurements integrating geological information. Data of airborne radioactivity in ambient aerosol at two elevated stations in Emilia Romagna (North Italy) under the influence of Fukushima plume have been collected, effective doses have been calculated and an extensive comparison between doses associated with artificial and natural sources in different area have been described and discussed.
Resumo:
The research activity characterizing the present thesis was mainly centered on the design, development and validation of methodologies for the estimation of stationary and time-varying connectivity between different regions of the human brain during specific complex cognitive tasks. Such activity involved two main aspects: i) the development of a stable, consistent and reproducible procedure for functional connectivity estimation with a high impact on neuroscience field and ii) its application to real data from healthy volunteers eliciting specific cognitive processes (attention and memory). In particular the methodological issues addressed in the present thesis consisted in finding out an approach to be applied in neuroscience field able to: i) include all the cerebral sources in connectivity estimation process; ii) to accurately describe the temporal evolution of connectivity networks; iii) to assess the significance of connectivity patterns; iv) to consistently describe relevant properties of brain networks. The advancement provided in this thesis allowed finding out quantifiable descriptors of cognitive processes during a high resolution EEG experiment involving subjects performing complex cognitive tasks.
Resumo:
The present study has been carried out with the following objectives: i) To investigate the attributes of source parameters of local and regional earthquakes; ii) To estimate, as accurately as possible, M0, fc, Δσ and their standard errors to infer their relationship with source size; iii) To quantify high-frequency earthquake ground motion and to study the source scaling. This work is based on observational data of micro, small and moderate -earthquakes for three selected seismic sequences, namely Parkfield (CA, USA), Maule (Chile) and Ferrara (Italy). For the Parkfield seismic sequence (CA), a data set of 757 (42 clusters) repeating micro-earthquakes (0 ≤ MW ≤ 2), collected using borehole High Resolution Seismic Network (HRSN), have been analyzed and interpreted. We used the coda methodology to compute spectral ratios to obtain accurate values of fc , Δσ, and M0 for three target clusters (San Francisco, Los Angeles, and Hawaii) of our data. We also performed a general regression on peak ground velocities to obtain reliable seismic spectra of all earthquakes. For the Maule seismic sequence, a data set of 172 aftershocks of the 2010 MW 8.8 earthquake (3.7 ≤ MW ≤ 6.2), recorded by more than 100 temporary broadband stations, have been analyzed and interpreted to quantify high-frequency earthquake ground motion in this subduction zone. We completely calibrated the excitation and attenuation of the ground motion in Central Chile. For the Ferrara sequence, we calculated moment tensor solutions for 20 events from MW 5.63 (the largest main event occurred on May 20 2012), down to MW 3.2 by a 1-D velocity model for the crust beneath the Pianura Padana, using all the geophysical and geological information available for the area. The PADANIA model allowed a numerical study on the characteristics of the ground motion in the thick sediments of the flood plain.
Resumo:
The Schroeder's backward integration method is the most used method to extract the decay curve of an acoustic impulse response and to calculate the reverberation time from this curve. In the literature the limits and the possible improvements of this method are widely discussed. In this work a new method is proposed for the evaluation of the energy decay curve. The new method has been implemented in a Matlab toolbox. Its performance has been tested versus the most accredited literature method. The values of EDT and reverberation time extracted from the energy decay curves calculated with both methods have been compared in terms of the values themselves and in terms of their statistical representativeness. The main case study consists of nine Italian historical theatres in which acoustical measurements were performed. The comparison of the two extraction methods has also been applied to a critical case, i.e. the structural impulse responses of some building elements. The comparison underlines that both methods return a comparable value of the T30. Decreasing the range of evaluation, they reveal increasing differences; in particular, the main differences are in the first part of the decay, where the EDT is evaluated. This is a consequence of the fact that the new method returns a “locally" defined energy decay curve, whereas the Schroeder's method accumulates energy from the tail to the beginning of the impulse response. Another characteristic of the new method for the energy decay extraction curve is its independence on the background noise estimation. Finally, a statistical analysis is performed on the T30 and EDT values calculated from the impulse responses measurements in the Italian historical theatres. The aim of this evaluation is to know whether a subset of measurements could be considered representative for a complete characterization of these opera houses.
Resumo:
Small-scale dynamic stochastic general equilibrium have been treated as the benchmark of much of the monetary policy literature, given their ability to explain the impact of monetary policy on output, inflation and financial markets. One cause of the empirical failure of New Keynesian models is partially due to the Rational Expectations (RE) paradigm, which entails a tight structure on the dynamics of the system. Under this hypothesis, the agents are assumed to know the data genereting process. In this paper, we propose the econometric analysis of New Keynesian DSGE models under an alternative expectations generating paradigm, which can be regarded as an intermediate position between rational expectations and learning, nameley an adapted version of the "Quasi-Rational" Expectatations (QRE) hypothesis. Given the agents' statistical model, we build a pseudo-structural form from the baseline system of Euler equations, imposing that the length of the reduced form is the same as in the `best' statistical model.
Resumo:
The objective of this thesis is the small area estimation of an economic security indicator. Economic security is a complex concept that carries a variety of meanings. In the literature there is no a formal unambiguous definition for economic security and in this work we refer to the definition recently provided for its opposite, economic insecurity, as the “anxiety produced by the possible exposure to adverse economic events and by the anticipation of the difficulty to recover from them” (Bossert and D’Ambrosio, 2013). In the last decade interest for economic insecurity/security has grown constantly, especially since the financial crisis of 2008, but even more in the last year after the economic consequences due to the Covid-19 pandemic. In this research, economic security is measures through a longitudinal indicator that takes into account the income levels of Italian households, from 2014 to 2016. The target areas are groups of Italian provinces, for which the indicator is estimated using longitudinal data taken from EU-SILC survey. We notice that the sample size is too low to obtain reliable estimates for our target areas. Therefore we resort to some Small Area Estimation strategies to improve the reliability of the results. In particular we consider small area models specified at area level. Besides the basic Fay-Herriot area-level model, we propose to consider some longitudinal extensions, including time-specific random effects following an autoregressive processes of order 1 (AR1) and a moving average of order 1 (MA1). We found that all the small area models used show a significant efficiency gain, especially MA1 model.
Resumo:
In the agri-food sector, measurement and monitoring activities contribute to high quality end products. In particular, considering food of plant origin, several product quality attributes can be monitored. Among the non-destructive measurement techniques, a large variety of optical techniques are available, including hyperspectral imaging (HSI) in the visible/near-infrared (Vis/NIR) range, which, due to the capacity to integrate image analysis and spectroscopy, proved particularly useful in agronomy and food science. Many published studies regarding HSI systems were carried out under controlled laboratory conditions. In contrast, few studies describe the application of HSI technology directly in the field, in particular for high-resolution proximal measurements carried out on the ground. Based on this background, the activities of the present PhD project were aimed at exploring and deepening knowledge in the application of optical techniques for the estimation of quality attributes of agri-food plant products. First, research activities on laboratory trials carried out on apricots and kiwis for the estimation of soluble solids content (SSC) and flesh firmness (FF) through HSI were reported; subsequently, FF was estimated on kiwis using a NIR-sensitive device; finally, the procyanidin content of red wine was estimated through a device based on the pulsed spectral sensitive photometry technique. In the second part, trials were carried out directly in the field to assess the degree of ripeness of red wine grapes by estimating SSC through HSI, and finally a method for the automatic selection of regions of interest in hyperspectral images of the vineyard was developed. The activities described above have revealed the potential of the optical techniques for sorting-line application; moreover, the application of the HSI technique directly in the field has proved particularly interesting, suggesting further investigations to solve a variety of problems arising from the many environmental variables that may affect the results of the analyses.
Resumo:
The work carried out in this thesis aims at: - studying – in both simulative and experimental methods – the effect of electrical transients (i.e., Voltage Polarity Reversals VPRs, Temporary OverVoltages TOVs, and Superimposed Switching Impulses SSIs) on the aging phenomena in HVDC extruded cable insulations. Dielectric spectroscopy, conductivity measurements, Fourier Transform Infra-Red FTIR spectroscopy, and space charge measurements show variation in the insulating properties of the aged Cross-Linked Polyethylene XLPE specimens compared to non-aged ones. Scission in XLPE bonds and formation of aging chemical bonds is also noticed in aged insulations due to possible oxidation reactions. The aged materials show more ability to accumulate space charges compared to non-aged ones. An increase in both DC electrical conductivity and imaginary permittivity has been also noticed. - The development of life-based geometric design of HVDC cables in a detailed parametric analysis of all parameters that affect the design. Furthermore, the effect of both electrical and thermal transients on the design is also investigated. - The intrinsic thermal instability in HVDC cables and the effect of insulation characteristics on the thermal stability using a temperature and field iterative loop (using numerical methods – Finite Difference Method FDM). The dielectric loss coefficient is also calculated for DC cables and found to be less than that in AC cables. This emphasizes that the intrinsic thermal instability is critical in HVDC cables. - Fitting electrical conductivity models to the experimental measurements using both models found in the literature and modified models to find the best fit by considering the synergistic effect between field and temperature coefficients of electrical conductivity.