6 resultados para Equation of state
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The first part of the thesis concerns the study of inflation in the context of a theory of gravity called "Induced Gravity" in which the gravitational coupling varies in time according to the dynamics of the very same scalar field (the "inflaton") driving inflation, while taking on the value measured today since the end of inflation. Through the analytical and numerical analysis of scalar and tensor cosmological perturbations we show that the model leads to consistent predictions for a broad variety of symmetry-breaking inflaton's potentials, once that a dimensionless parameter entering into the action is properly constrained. We also discuss the average expansion of the Universe after inflation (when the inflaton undergoes coherent oscillations about the minimum of its potential) and determine the effective equation of state. Finally, we analyze the resonant and perturbative decay of the inflaton during (p)reheating. The second part is devoted to the study of a proposal for a quantum theory of gravity dubbed "Horava-Lifshitz (HL) Gravity" which relies on power-counting renormalizability while explicitly breaking Lorentz invariance. We test a pair of variants of the theory ("projectable" and "non-projectable") on a cosmological background and with the inclusion of scalar field matter. By inspecting the quadratic action for the linear scalar cosmological perturbations we determine the actual number of propagating degrees of freedom and realize that the theory, being endowed with less symmetries than General Relativity, does admit an extra gravitational degree of freedom which is potentially unstable. More specifically, we conclude that in the case of projectable HL Gravity the extra mode is either a ghost or a tachyon, whereas in the case of non-projectable HL Gravity the extra mode can be made well-behaved for suitable choices of a pair of free dimensionless parameters and, moreover, turns out to decouple from the low-energy Physics.
Resumo:
This work presents the results of theoretical and experimental characterization of thermodynamic, mechanical and transport properties in polymer solvent systems. The polymer solvent pairs considered ranged to those in which the polymer is rubbery, to those in which the initially glassy polymeric matrix is plasticized by the action of the low molecular weight species. Advanced Equation of State models have been adopted for thermodynamic modeling,along with a rigorous procedure that enables to extend their applicability to the non equilibrium, glassy region. Mass sorption kinetics had been modeled with phenomenological models and with advanced kinetic models.
Resumo:
The purpose of this thesis is the atomic-scale simulation of the crystal-chemical and physical (phonon, energetic) properties of some strategically important minerals for structural ceramics, biomedical and petrological applications. These properties affect the thermodynamic stability and rule the mineral-environment interface phenomena, with important economical, (bio)technological, petrological and environmental implications. The minerals of interest belong to the family of phyllosilicates (talc, pyrophyllite and muscovite) and apatite (OHAp), chosen for their importance in industrial and biomedical applications (structural ceramics) and petrophysics. In this thesis work we have applicated quantum mechanics methods, formulas and knowledge to the resolution of mineralogical problems ("Quantum Mineralogy”). The chosen theoretical approach is the Density Functional Theory (DFT), along with periodic boundary conditions to limit the portion of the mineral in analysis to the crystallographic cell and the hybrid functional B3LYP. The crystalline orbitals were simulated by linear combination of Gaussian functions (GTO). The dispersive forces, which are important for the structural determination of phyllosilicates and not properly con-sidered in pure DFT method, have been included by means of a semi-empirical correction. The phonon and the mechanical properties were also calculated. The equation of state, both in athermal conditions and in a wide temperature range, has been obtained by means of variations in the volume of the cell and quasi-harmonic approximation. Some thermo-chemical properties of the minerals (isochoric and isobaric thermal capacity) were calculated, because of their considerable applicative importance. For the first time three-dimensional charts related to these properties at different pressures and temperatures were provided. The hydroxylapatite has been studied from the standpoint of structural and phonon properties for its biotechnological role. In fact, biological apatite represents the inorganic phase of vertebrate hard tissues. Numerous carbonated (hydroxyl)apatite structures were modelled by QM to cover the broadest spectrum of possible biological structural variations to fulfil bioceramics applications.
Enhancing predictive capability of models for solubility and permeability in polymers and composites
Resumo:
The interpretation of phase equilibrium and mass transport phenomena in gas/solvent - polymer system at molten or glassy state is relevant in many industrial applications. Among tools available for the prediction of thermodynamics properties in these systems, at molten/rubbery state, is the group contribution lattice-fluid equation of state (GCLF-EoS), developed by Lee and Danner and ultimately based on Panayiotou and Vera LF theory. On the other side, a thermodynamic approach namely non-equilibrium lattice-fluid (NELF) was proposed by Doghieri and Sarti to consistently extend the description of thermodynamic properties of solute polymer systems obtained through a suitable equilibrium model to the case of non-equilibrium conditions below the glass transition temperature. The first objective of this work is to investigate the phase behaviour in solvent/polymer at glassy state by using NELF model and to develop a predictive tool for gas or vapor solubility that could be applied in several different applications: membrane gas separation, barrier materials for food packaging, polymer-based gas sensors and drug delivery devices. Within the efforts to develop a predictive tool of this kind, a revision of the group contribution method developed by High and Danner for the application of LF model by Panayiotou and Vera is considered, with reference to possible alternatives for the mixing rule for characteristic interaction energy between segments. The work also devotes efforts to the analysis of gas permeability in polymer composite materials as formed by a polymer matrix in which domains are dispersed of a second phase and attention is focused on relation for deviation from Maxwell law as function of arrangement, shape of dispersed domains and loading.
Resumo:
This research activity aims at providing a reliable estimation of particular state variables or parameters concerning the dynamics and performance optimization of a MotoGP-class motorcycle, integrating the classical model-based approach with new methodologies involving artificial intelligence. The first topic of the research focuses on the estimation of the thermal behavior of the MotoGP carbon braking system. Numerical tools are developed to assess the instantaneous surface temperature distribution in the motorcycle's front brake discs. Within this application other important brake parameters are identified using Kalman filters, such as the disc convection coefficient and the power distribution in the disc-pads contact region. Subsequently, a physical model of the brake is built to estimate the instantaneous braking torque. However, the results obtained with this approach are highly limited by the knowledge of the friction coefficient (μ) between the disc rotor and the pads. Since the value of μ is a highly nonlinear function of many variables (namely temperature, pressure and angular velocity of the disc), an analytical model for the friction coefficient estimation appears impractical to establish. To overcome this challenge, an innovative hybrid solution is implemented, combining the benefit of artificial intelligence (AI) with classical model-based approach. Indeed, the disc temperature estimated through the thermal model previously implemented is processed by a machine learning algorithm that outputs the actual value of the friction coefficient thus improving the braking torque computation performed by the physical model of the brake. Finally, the last topic of this research activity regards the development of an AI algorithm to estimate the current sideslip angle of the motorcycle's front tire. While a single-track motorcycle kinematic model and IMU accelerometer signals theoretically enable sideslip calculation, the presence of accelerometer noise leads to a significant drift over time. To address this issue, a long short-term memory (LSTM) network is implemented.
Resumo:
The aim of this Thesis is to investigate the possibility that the observations related to the epoch of reionization can probe not only the evolution of the IGM state, but also the cosmological background in which this process occurs. In fact, the history of the IGM ionization is indeed affected by the evolution of the sources of ionizing photons that, under the assumption of a structure formation paradigm determined by the hierarchic growth of the matter uctuations, results strongly dependent on the characteristics of the background universe. For the purpose of our investigation, we have analysed the reionization history in innovative cosmological frameworks, still in agreement with the recent observational tests related to the SNIa and the CMB probes, comparing our results with the reionization scenario predicted by the commonly used LCDM cosmology. In particular, in this Thesis we have considered two different alternative universes. The first one is a at universe dominated at late epochs by a dynamic dark energy component, characterized by an equation of state evolving in time. The second cosmological framework we have assumed is a LCDM characterized by a primordial overdensity field having a non-Gaussian probability distribution. The reionization scenario have been investigated, in this Thesis, through semi-analytic approaches based on the hierarichic growth of the matter uctuations and on suitable assumptions concerning the ionization and the recombination of the IGM. We make predictions for the evolution and the distribution of the HII regions, and for the global features of reionization, that can be constrained by future observations. Finally, we brie y discuss the possible future prospects of this Thesis work.