13 resultados para Epstein and Zin’s recursive utility function
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Obesity often predisposes to coronary heart disease, heart failure, and sudden death. Also, several studies suggest a reciprocal enhancing interaction between obesity and sleep curtailment. Aim of the present study was to go deeper in the understanding of sleep and cardiovascular regulation in an animal model of diet-induced obesity (DIO). According to this, Wake-Sleep (W-S) regulation, and W-S dependent regulation of cardiovascular and metabolic/thermoregulatory function was studied in DIO rats, under normal laboratory conditions and during sleep deprivation and the following recovery period, enhancing either wake or sleep, respectively. After 8 weeks of the delivery of a hypercaloric (HC) diet, treated animals were heavier than those fed a normocaloric (NC) diet (NC: 441 ±17g; HC: 557±17g). HC rats slept more than NC ones during the activity period (Dark) of the normal 12h:12h light-dark (LD) cycle (Wake: 67.3±1.2% and 57.2 ±1.6%; NREM sleep (NREMS): 26.8±1.0% and 34.0±1.4%; REM sleep (REMS): 5.7±0. 6% and 8.6±0.7%; for NC and HC, respectively; p<0.05 for all). HC rats were hypertensive throughout the W-S states, as shown by the mean arterial blood pressure values across the 24-h period (Wake: 90.0±5.3 and 97.3±1.3; NREMS: 85.1±5.5 and 92.2±1.2; REMS: 87.2±4.5 and 96.5±1.1, mmHg for NC and HC, respectively; p<0.05 for all). Also, HC rats appeared to be slightly bradycardic compared to NC ones (Wake: 359.8±9.3 and 352.4±7.7; NREMS: 332.5±10.1 and 328.9±5.4; REMS: 338.5±9.3 and 334.4±5.8; bpm for NC and HC, respectively; p<0.05 for Wake). In HC animals, sleep regulation was not apparently altered during the sleep rebound observed in the recovery period following sleep deprivation, although REMS rebound appeared to be quicker in NC animals. In conclusion, these results indicate that in the rat obesity interfere with W-S and cardiovascular regulation and that DIO rats are suitable for further studies aimed at a better understanding of obesity comorbidities.
Resumo:
Gait analysis allows to characterize motor function, highlighting deviations from normal motor behavior related to an underlying pathology. The widespread use of wearable inertial sensors has opened the way to the evaluation of ecological gait, and a variety of methodological approaches and algorithms have been proposed for the characterization of gait from inertial measures (e.g. for temporal parameters, motor stability and variability, specific pathological alterations). However, no comparative analysis of their performance (i.e. accuracy, repeatability) was available yet, in particular, analysing how this performance is affected by extrinsic (i.e. sensor location, computational approach, analysed variable, testing environmental constraints) and intrinsic (i.e. functional alterations resulting from pathology) factors. The aim of the present project was to comparatively analyze the influence of intrinsic and extrinsic factors on the performance of the numerous algorithms proposed in the literature for the quantification of specific characteristics (i.e. timing, variability/stability) and alterations (i.e. freezing) of gait. Considering extrinsic factors, the influence of sensor location, analyzed variable, and computational approach on the performance of a selection of gait segmentation algorithms from a literature review was analysed in different environmental conditions (e.g. solid ground, sand, in water). Moreover, the influence of altered environmental conditions (i.e. in water) was analyzed as referred to the minimum number of stride necessary to obtain reliable estimates of gait variability and stability metrics, integrating what already available in the literature for over ground gait in healthy subjects. Considering intrinsic factors, the influence of specific pathological conditions (i.e. Parkinson’s Disease) was analyzed as affecting the performance of segmentation algorithms, with and without freezing. Finally, the analysis of the performance of algorithms for the detection of gait freezing showed how results depend on the domain of implementation and IMU position.
Resumo:
In this thesis we provide a characterization of probabilistic computation in itself, from a recursion-theoretical perspective, without reducing it to deterministic computation. More specifically, we show that probabilistic computable functions, i.e., those functions which are computed by Probabilistic Turing Machines (PTM), can be characterized by a natural generalization of Kleene's partial recursive functions which includes, among initial functions, one that returns identity or successor with probability 1/2. We then prove the equi-expressivity of the obtained algebra and the class of functions computed by PTMs. In the the second part of the thesis we investigate the relations existing between our recursion-theoretical framework and sub-recursive classes, in the spirit of Implicit Computational Complexity. More precisely, endowing predicative recurrence with a random base function is proved to lead to a characterization of polynomial-time computable probabilistic functions.
Resumo:
In this Thesis, we investigate the cosmological co-evolution of supermassive black holes (BHs), Active Galactic Nuclei (AGN) and their hosting dark matter (DM) halos and galaxies, within the standard CDM scenario. We analyze both analytic, semi-analytic and hybrid techniques and use the most recent observational data available to constrain the assumptions underlying our models. First, we focus on very simple analytic models where the assembly of BHs is directly related to the merger history of DM haloes. For this purpose, we implement the two original analytic models of Wyithe & Loeb 2002 and Wyithe & Loeb 2003, compare their predictions to the AGN luminosity function and clustering data, and discuss possible modifications to the models that improve the match to the observation. Then we study more sophisticated semi-analytic models in which however the baryonic physics is neglected as well. Finally we improve the hybrid simulation of De Lucia & Blaizot 2007, adding new semi-analytical prescriptions to describe the BH mass accretion rate during each merger event and its conversion into radiation, and compare the derived BH scaling relations, fundamental plane and mass function, and the AGN luminosity function with observations. All our results support the following scenario: • The cosmological co-evolution of BHs, AGN and galaxies can be well described within the CDM model. • At redshifts z & 1, the evolution history of DM halo fully determines the overall properties of the BH and AGN populations. The AGN emission is triggered mainly by DM halo major mergers and, on average, AGN shine at their Eddington luminosity. • At redshifts z . 1, BH growth decouples from halo growth. Galaxy major mergers cannot constitute the only trigger to accretion episodes in this phase. • When a static hot halo has formed around a galaxy, a fraction of the hot gas continuously accretes onto the central BH, causing a low-energy “radio” activity at the galactic centre, which prevents significant gas cooling and thus limiting the mass of the central galaxies and quenching the star formation at late time. • The cold gas fraction accreted by BHs at high redshifts seems to be larger than at low redshifts.
Resumo:
Many physiological and pathological processes are mediated by the activity of proteins assembled in homo and/or hetero-oligomers. The correct recognition and association of these proteins into a functional complex is a key step determining the fate of the whole pathway. This has led to an increasing interest in selecting molecules able to modulate/inhibit these protein-protein interactions. In particular, our research was focused on Heat Shock Protein 90 (Hsp90), responsible for the activation and maturation and disposition of many client proteins [1], [2] [3]. Circular Dichroism (CD) spectroscopy, Surface Plasmon Resonance (SPR) and Affinity Capillary Electrophoresis (ACE) were used to characterize the Hsp90 target and, furthermore, its inhibition process via C-terminal domain driven by the small molecule Coumermycin A1. Circular Dichroism was used as powerful technique to characterize Hsp90 and its co-chaperone Hop in solution for secondary structure content, stability to different pHs, temperatures and solvents. Furthermore, CD was used to characterize ATP but, unfortunately, we were not able to monitor an interaction between ATP and Hsp90. The utility of SPR technology, on the other hand, arises from the possibility of immobilizing the protein on a chip through its N-terminal domain to later study the interaction with small molecules able to disrupt the Hsp90 dimerization on the C-terminal domain. The protein was attached on SPR chip using the “amine coupling” chemistry so that the C-terminal domain was free to interact with Coumermycin A1. The goal of the experiment was achieved by testing a range of concentrations of the small molecule Coumermycin A1. Despite to the large difference in the molecular weight of the protein (90KDa) and the drug (1110.08 Da), we were able to calculate the affinity constant of the interaction that was found to be 11.2 µm. In order to confirm the binding constant calculated for the Hsp90 on the chip, we decided to use Capillary Electrophoresis to test the Coumermycin binding to Hsp90. First, this technique was conveniently used to characterize the Hsp90 sample in terms of composition and purity. The experimental conditions were settled on two different systems, the bared fused silica and the PVA-coated capillary. We were able to characterize the Hsp90 sample in both systems. Furthermore, we employed an application of capillary electrophoresis, the Affinity Capillary Electrophoresis (ACE), to measure and confirm the binding constant calculated for Coumermycin on Optical Biosensor. We found a KD = 19.45 µM. This result compares favorably with the KD previously obtained on biosensor. This is a promising result for the use of our novel approach to screen new potential inhibitors of Hsp90 C-terminal domain.
Resumo:
Animal neocentromeres are defined as ectopic centromeres that have formed in non-centromeric locations and avoid some of the features, like the DNA satellite sequence, that normally characterize canonical centromeres. Despite this, they are stable functional centromeres inherited through generations. The only existence of neocentromeres provide convincing evidence that centromere specification is determined by epigenetic rather than sequence-specific mechanisms. For all this reasons, we used them as simplified models to investigate the molecular mechanisms that underlay the formation and the maintenance of functional centromeres. We collected human cell lines carrying neocentromeres in different positions. To investigate the region involved in the process at the DNA sequence level we applied a recent technology that integrates Chromatin Immuno-Precipitation and DNA microarrays (ChIP-on-chip) using rabbit polyclonal antibodies directed against CENP-A or CENP-C human centromeric proteins. These DNA binding-proteins are required for kinetochore function and are exclusively targeted to functional centromeres. Thus, the immunoprecipitation of DNA bound by these proteins allows the isolation of centromeric sequences, including those of the neocentromeres. Neocentromeres arise even in protein-coding genes region. We further analyzed if the increased scaffold attachment sites and the corresponding tighter chromatin of the region involved in the neocentromerization process still were permissive or not to transcription of within encoded genes. Centromere repositioning is a phenomenon in which a neocentromere arisen without altering the gene order, followed by the inactivation of the canonical centromere, becomes fixed in population. It is a process of chromosome rearrangement fundamental in evolution, at the bases of speciation. The repeat-free region where the neocentromere initially forms, progressively acquires extended arrays of satellite tandem repeats that may contribute to its functional stability. In this view our attention focalized to the repositioned horse ECA11 centromere. ChIP-on-chip analysis was used to define the region involved and SNPs studies, mapping within the region involved into neocentromerization, were carried on. We have been able to describe the structural polymorphism of the chromosome 11 centromeric domain of Caballus population. That polymorphism was seen even between homologues chromosome of the same cells. That discovery was the first described ever. Genomic plasticity had a fundamental role in evolution. Centromeres are not static packaged region of genomes. The key question that fascinates biologists is to understand how that centromere plasticity could be combined to the stability and maintenance of centromeric function. Starting from the epigenetic point of view that underlies centromere formation, we decided to analyze the RNA content of centromeric chromatin. RNA, as well as secondary chemically modifications that involve both histones and DNA, represents a good candidate to guide somehow the centromere formation and maintenance. Many observations suggest that transcription of centromeric DNA or of other non-coding RNAs could affect centromere formation. To date has been no thorough investigation addressing the identity of the chromatin-associated RNAs (CARs) on a global scale. This prompted us to develop techniques to identify CARs in a genome-wide approach using high-throughput genomic platforms. The future goal of this study will be to focalize the attention on what strictly happens specifically inside centromere chromatin.
Resumo:
The present work is devoted to the assessment of the energy fluxes physics in the space of scales and physical space of wall-turbulent flows. The generalized Kolmogorov equation will be applied to DNS data of a turbulent channel flow in order to describe the energy fluxes paths from production to dissipation in the augmented space of wall-turbulent flows. This multidimensional description will be shown to be crucial to understand the formation and sustainment of the turbulent fluctuations fed by the energy fluxes coming from the near-wall production region. An unexpected behavior of the energy fluxes comes out from this analysis consisting of spiral-like paths in the combined physical/scale space where the controversial reverse energy cascade plays a central role. The observed behavior conflicts with the classical notion of the Richardson/Kolmogorov energy cascade and may have strong repercussions on both theoretical and modeling approaches to wall-turbulence. To this aim a new relation stating the leading physical processes governing the energy transfer in wall-turbulence is suggested and shown able to capture most of the rich dynamics of the shear dominated region of the flow. Two dynamical processes are identified as driving mechanisms for the fluxes, one in the near wall region and a second one further away from the wall. The former, stronger one is related to the dynamics involved in the near-wall turbulence regeneration cycle. The second suggests an outer self-sustaining mechanism which is asymptotically expected to take place in the log-layer and could explain the debated mixed inner/outer scaling of the near-wall statistics. The same approach is applied for the first time to a filtered velocity field. A generalized Kolmogorov equation specialized for filtered velocity field is derived and discussed. The results will show what effects the subgrid scales have on the resolved motion in both physical and scale space, singling out the prominent role of the filter length compared to the cross-over scale between production dominated scales and inertial range, lc, and the reverse energy cascade region lb. The systematic characterization of the resolved and subgrid physics as function of the filter scale and of the wall-distance will be shown instrumental for a correct use of LES models in the simulation of wall turbulent flows. Taking inspiration from the new relation for the energy transfer in wall turbulence, a new class of LES models will be also proposed. Finally, the generalized Kolmogorov equation specialized for filtered velocity fields will be shown to be an helpful statistical tool for the assessment of LES models and for the development of new ones. As example, some classical purely dissipative eddy viscosity models are analyzed via an a priori procedure.
Resumo:
Tradizionalmente, l'obiettivo della calibrazione di un modello afflussi-deflussi è sempre stato quello di ottenere un set di parametri (o una distribuzione di probabilità dei parametri) che massimizzasse l'adattamento dei dati simulati alla realtà osservata, trattando parzialmente le finalità applicative del modello. Nel lavoro di tesi viene proposta una metodologia di calibrazione che trae spunto dell'evidenza che non sempre la corrispondenza tra dati osservati e simulati rappresenti il criterio più appropriato per calibrare un modello idrologico. Ai fini applicativi infatti, può risultare maggiormente utile una miglior rappresentazione di un determinato aspetto dell'idrogramma piuttosto che un altro. Il metodo di calibrazione che viene proposto mira a valutare le prestazioni del modello stimandone l'utilità nell'applicazione prevista. Tramite l'utilizzo di opportune funzioni, ad ogni passo temporale viene valutata l'utilità della simulazione ottenuta. La calibrazione viene quindi eseguita attraverso la massimizzazione di una funzione obiettivo costituita dalla somma delle utilità stimate nei singoli passi temporali. Le analisi mostrano come attraverso l'impiego di tali funzioni obiettivo sia possibile migliorare le prestazioni del modello laddove ritenute di maggior interesse per per le finalità applicative previste.
Resumo:
This dissertation consists of three papers. The first paper "Managing the Workload: an Experiment on Individual Decision Making and Performance" experimentally investigates how decision-making in workload management affects individual performance. I designed a laboratory experiment in order to exogenously manipulate the schedule of work faced by each subject and to identify its impact on final performance. Through the mouse click-tracking technique, I also collected interesting behavioral measures on organizational skills. I found that a non-negligible share of individuals performs better under externally imposed schedules than in the unconstrained case. However, such constraints are detrimental for those good in self-organizing. The second chapter, "On the allocation of effort with multiple tasks and piecewise monotonic hazard function", tests the optimality of a scheduling model, proposed in a different literature, for the decisional problem faced in the experiment. Under specific assumptions, I find that such model identifies what would be the optimal scheduling of the tasks in the Admission Test. The third paper "The Effects of Scholarships and Tuition Fees Discounts on Students' Performances: Which Monetary Incentives work Better?" explores how different levels of monetary incentives affect the achievement of students in tertiary education. I used a Regression Discontinuity Design to exploit the assignment of different monetary incentives, to study the effects of such liquidity provision on performance outcomes, ceteris paribus. The results show that a monetary increase in the scholarships generates no effect on performance since the achievements of the recipients are all centered near the requirements for non-returning the benefit. Secondly, students, who are actually paying some share of the total cost of college attendance, surprisingly, perform better than those whose cost is completely subsidized. A lower benefit, relatively to a higher aid, it motivates students to finish early and not to suffer the extra cost of a delayed graduation.
Resumo:
Alzheimer's disease (AD) is the most common neurodegenerative disease in elderly. Donepezil is the first-line drug used for AD. In section one, the experimental activity was oriented to evaluate and characterize molecular and cellular mechanisms that contribute to neurodegeneration induced by the Aβ1-42 oligomers (Aβ1-42O) and potential neuroprotective effects of the hybrids feruloyl-donepezil compound called PQM130. The effects of PQM130 were compared to donepezil in a murine AD model, obtained by intracerebroventricular (i.c.v.) injection of Aβ1-42O. The intraperitoneal administration of PQM130 (0.5-1 mg/kg) after i.c.v. Aβ1-42O injection improved learning and memory, protecting mice against spatial cognition decline. Moreover, it reduced oxidative stress, neuroinflammation and neuronal apoptosis, induced cell survival and protein synthesis in mice hippocampus. PQM130 modulated different pathways than donepezil, and it is more effective in counteracting Aβ1-42O damage. The section two of the experimental activity was focused on studying a loss of function variants of ABCA7. GWA studies identified mutations in the ABCA7 gene as a risk factor for AD. The mechanism through which ABCA7 contributes to AD is not clear. ABCA7 regulates lipid metabolism and critically controls phagocytic function. To investigate ABCA7 functions, CRISPR/Cas9 technology was used to engineer human iPSCs and to carry the genetic variant Y622*, which results in a premature stop codon, causing ABCA7 loss-of-function. From iPSCs, astrocytes were generated. This study revealed the effects of ABCA7 loss in astrocytes. ABCA7 Y622* mutation induced dysfunctional endocytic trafficking, impairing Aβ clearance, lipid dysregulation and cell homeostasis disruption, alterations that could contribute to AD. Though further studies are needed to confirm the PQM130 neuroprotective role and ABCA7 function in AD, the provided results showed a better understanding of AD pathophysiology, a new therapeutic approach to treat AD, and illustrated an innovative methodology for studying the disease.
Resumo:
Induced mutagenesis has been exploited for crop improvement and for investigating gene function and regulation. To unravel molecular mechanisms of stress resilience, we applied state-of-the-art genomics-based gene cloning methods to barley mutant lines showing altered root and shoot architecture and disease lesion mimic phenotypes. With a novel method that we named complementation by sequencing, we cloned NEC3, the causal gene for an orange-spotted disease lesion mimic phenotype. NEC3 belongs to the CYP71P1 gene family and it is involved in serotonin biosynthesis. By comparative phylogenetic analysis we showed that CYP71P1 emerged early in angiosperm evolution but was lost in some lineages including Arabidopsis thaliana. By BSA-Seq, we cloned the gene whose mutation increased leaf width, and we showed that the gene corresponded to the previously cloned BROADLEAF1. By BSA coupled to WGS sequencing, we cloned EGT1 and EGT2, two genes that regulate root gravitropic set point angle. EGT1 encodes a Tubby-like F-box protein and EGT2 encodes a Sterile Alpha Motive protein; EGT2 is phylogenetically related to AtSAM5 in Arabidopsis and to WEEP in peach where it regulates branch angle. Both EGT1 and EGT2 are conserved in wheat. We hypothesized that both participate to an anti-gravitropic offset mechanism since their disruption causes mutant roots to grow along the gravity vector. By the MutMap+ method, we cloned the causal gene of a short and semi-rigid root mutant and found that it encodes for an endoglucanase and is the ortholog of OsGLU3 in rice whose mutant has the same phenotype, suggesting that the gene is conserved in barley and rice. The mutants and the corresponding genes which were cloned in this work are involved in the response to stress and can potentially contribute to crop adaptation.
Resumo:
The gastrointestinal tract (GIT) represents the major portion of the body that interfaces with the external environment, with the double function of food processing and line of defense of the body. Numerous components support and regulate the barrier function of the GIT, such as tight junctions (TJs), cytokines, commensal and pathogenic microorganisms, and other systems of the organism, as the endocannabinoid system (ECS). The ECS can control several gastrointestinal functions, as well as the regulation of intestinal inflammation. Failure of the intestinal barrier function triggers an increase of the concentration of pro-inflammatory cytokines and leads to a reduction in intestinal functionality. This thesis aimed to explore the potential of natural compounds as a new alternative approach to antibiotics not only as antimicrobial, but also supporting intestinal maturation and integrity, and as immune-boosting agents. Different experiments were performed to evaluate the potential of nature-identical compounds (NICs), organic acids (OAs), and essential oils (EOs) to support and fight various stressful stimuli. In vitro, a well characterized blend of NICs and OAs were able to improve TJs and transepithelial electrical resistance (TEER) in an intestinal cell line, exerting an anti-inflammatory potential. EOs enhanced TEER and TJs mRNA levels, with a reduction of paracellular permeability, showing antioxidant and antimicrobial properties. In vivo, thymol modulates the gene expression of ECS and gut chemosensing in the GIT of piglets, where the precise localization of the cannabinoid receptors was immunohistochemically confirmed, suggesting an anti-inflammatory potential. In conclusion, natural alternative molecules represent an effective alternative to support or replace the classical pharmacological prophylaxis. These alternative molecules act not only as antimicrobial agents, but also exerted a crucial role in supporting the intestinal barrier function, preventing oxidative stress, and reducing inflammation. Moreover, thymol seems able to modulate the ECS, representing a novel frontier to support animal health and productivity.
Resumo:
ABSTRACT Background:Strong opioids are the treatment of choice for moderate to severe cancer-related pain. Fentanyl is a synthetic opioid with high affinity for the μ-opioid receptor and is 75–100 times more potent than morphine. Fentanyl is metabolised rapidly, particularly in the liver and only 10% is excreted as intact substance. The use of CYP3A4 inhibitors and inducers, impaired liver function, and heating of the patch potentially influence fentanyl pharmacokinetics in a clinically relevant way. The influence of BMI and gender on fentanyl pharmacokinetics is questionable. Pharmacogenetic, may influence fentanyl pharmacokinetic and other factors have been studied but did not show significant and clinically relevant effects on fentanyl pharmacokinetic. Method: This is a biological interventional prospective, single-center study in 49 patients with solid or haematological neoplasm treated with transdermal fentanyl undergoing 5-step pharmacokinetic and pharmacogenetic withdrawals from administration of the fentanyl patch. Objective:to evaluate the pharmacokinetic and pharmacogenetic of transdermal fentanyl in relation to the patient's clinical response on pain Results: Sex was the only parameter with evidence of different distribution between responders and non-responders , showing a major chance for male to be responders than females. We found some correlation with pharmacokinetic parameters and sex, regarding adverse events and NRS correlation with BPI. NAT2 and UGT2B7 polymorphisms are associated with AUC and Cmax kinetics parameters, NAT2 and CYP4F2 showed some evidence of association with the fentanyl dosage and CYP2B6 polymorphism seemed to be correlate with side effects. Conclusion: Small sample size of study population make difficult do find some significant correlation between pharmacogenetic, pharmacokinetic and clinical response. Larger studies are needed to increase knowledge about response to opioid treatment in cancer patients to better individualized pain treatment.