2 resultados para Energetics

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present thesis a thourough multiwavelength analysis of a number of galaxy clusters known to be experiencing a merger event is presented. The bulk of the thesis consists in the analysis of deep radio observations of six merging clusters, which host extended radio emission on the cluster scale. A composite optical and X–ray analysis is performed in order to obtain a detailed and comprehensive picture of the cluster dynamics and possibly derive hints about the properties of the ongoing merger, such as the involved mass ratio, geometry and time scale. The combination of the high quality radio, optical and X–ray data allows us to investigate the implications of the ongoing merger for the cluster radio properties, focusing on the phenomenon of cluster scale diffuse radio sources, known as radio halos and relics. A total number of six merging clusters was selected for the present study: A3562, A697, A209, A521, RXCJ 1314.4–2515 and RXCJ 2003.5–2323. All of them were known, or suspected, to possess extended radio emission on the cluster scale, in the form of a radio halo and/or a relic. High sensitivity radio observations were carried out for all clusters using the Giant Metrewave Radio Telescope (GMRT) at low frequency (i.e. ≤ 610 MHz), in order to test the presence of a diffuse radio source and/or analyse in detail the properties of the hosted extended radio emission. For three clusters, the GMRT information was combined with higher frequency data from Very Large Array (VLA) observations. A re–analysis of the optical and X–ray data available in the public archives was carried out for all sources. Propriety deep XMM–Newton and Chandra observations were used to investigate the merger dynamics in A3562. Thanks to our multiwavelength analysis, we were able to confirm the existence of a radio halo and/or a relic in all clusters, and to connect their properties and origin to the reconstructed merging scenario for most of the investigated cases. • The existence of a small size and low power radio halo in A3562 was successfully explained in the theoretical framework of the particle re–acceleration model for the origin of radio halos, which invokes the re–acceleration of pre–existing relativistic electrons in the intracluster medium by merger–driven turbulence. • A giant radio halo was found in the massive galaxy cluster A209, which has likely undergone a past major merger and is currently experiencing a new merging process in a direction roughly orthogonal to the old merger axis. A giant radio halo was also detected in A697, whose optical and X–ray properties may be suggestive of a strong merger event along the line of sight. Given the cluster mass and the kind of merger, the existence of a giant radio halo in both clusters is expected in the framework of the re–acceleration scenario. • A radio relic was detected at the outskirts of A521, a highly dynamically disturbed cluster which is accreting a number of small mass concentrations. A possible explanation for its origin requires the presence of a merger–driven shock front at the location of the source. The spectral properties of the relic may support such interpretation and require a Mach number M < ∼ 3 for the shock. • The galaxy cluster RXCJ 1314.4–2515 is exceptional and unique in hosting two peripheral relic sources, extending on the Mpc scale, and a central small size radio halo. The existence of these sources requires the presence of an ongoing energetic merger. Our combined optical and X–ray investigation suggests that a strong merging process between two or more massive subclumps may be ongoing in this cluster. Thanks to forthcoming optical and X–ray observations, we will reconstruct in detail the merger dynamics and derive its energetics, to be related to the energy necessary for the particle re–acceleration in this cluster. • Finally, RXCJ 2003.5–2323 was found to possess a giant radio halo. This source is among the largest, most powerful and most distant (z=0.317) halos imaged so far. Unlike other radio halos, it shows a very peculiar morphology with bright clumps and filaments of emission, whose origin might be related to the relatively high redshift of the hosting cluster. Although very little optical and X–ray information is available about the cluster dynamical stage, the results of our optical analysis suggest the presence of two massive substructures which may be interacting with the cluster. Forthcoming observations in the optical and X–ray bands will allow us to confirm the expected high merging activity in this cluster. Throughout the present thesis a cosmology with H0 = 70 km s−1 Mpc−1, m=0.3 and =0.7 is assumed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis we focussed on the characterization of the reaction center (RC) protein purified from the photosynthetic bacterium Rhodobacter sphaeroides. In particular, we discussed the effects of native and artificial environment on the light-induced electron transfer processes. The native environment consist of the inner antenna LH1 complex that copurifies with the RC forming the so called core complex, and the lipid phase tightly associated with it. In parallel, we analyzed the role of saccharidic glassy matrices on the interplay between electron transfer processes and internal protein dynamics. As a different artificial matrix, we incorporated the RC protein in a layer-by-layer structure with a twofold aim: to check the behaviour of the protein in such an unusual environment and to test the response of the system to herbicides. By examining the RC in its native environment, we found that the light-induced charge separated state P+QB - is markedly stabilized (by about 40 meV) in the core complex as compared to the RC-only system over a physiological pH range. We also verified that, as compared to the average composition of the membrane, the core complex copurifies with a tightly bound lipid complement of about 90 phospholipid molecules per RC, which is strongly enriched in cardiolipin. In parallel, a large ubiquinone pool was found in association with the core complex, giving rise to a quinone concentration about ten times larger than the average one in the membrane. Moreover, this quinone pool is fully functional, i.e. it is promptly available at the QB site during multiple turnover excitation of the RC. The latter two observations suggest important heterogeneities and anisotropies in the native membranes which can in principle account for the stabilization of the charge separated state in the core complex. The thermodynamic and kinetic parameters obtained in the RC-LH1 complex are very close to those measured in intact membranes, indicating that the electron transfer properties of the RC in vivo are essentially determined by its local environment. The studies performed by incorporating the RC into saccharidic matrices evidenced the relevance of solvent-protein interactions and dynamical coupling in determining the kinetics of electron transfer processes. The usual approach when studying the interplay between internal motions and protein function consists in freezing the degrees of freedom of the protein at cryogenic temperature. We proved that the “trehalose approach” offers distinct advantages with respect to this traditional methodology. We showed, in fact, that the RC conformational dynamics, coupled to specific electron transfer processes, can be modulated by varying the hydration level of the trehalose matrix at room temperature, thus allowing to disentangle solvent from temperature effects. The comparison between different saccharidic matrices has revealed that the structural and dynamical protein-matrix coupling depends strongly upon the sugar. The analyses performed in RCs embedded in polyelectrolyte multilayers (PEM) structures have shown that the electron transfer from QA - to QB, a conformationally gated process extremely sensitive to the RC environment, can be strongly modulated by the hydration level of the matrix, confirming analogous results obtained for this electron transfer reaction in sugar matrices. We found that PEM-RCs are a very stable system, particularly suitable to study the thermodynamics and kinetics of herbicide binding to the QB site. These features make PEM-RC structures quite promising in the development of herbicide biosensors. The studies discussed in the present thesis have shown that, although the effects on electron transfer induced by the native and artificial environments tested are markedly different, they can be described on the basis of a common kinetic model which takes into account the static conformational heterogeneity of the RC and the interconversion between conformational substates. Interestingly, the same distribution of rate constants (i.e. a Gamma distribution function) can describe charge recombination processes in solutions of purified RC, in RC-LH1 complexes, in wet and dry RC-PEM structures and in glassy saccharidic matrices over a wide range of hydration levels. In conclusion, the results obtained for RCs in different physico-chemical environments emphasize the relevance of the structure/dynamics solvent/protein coupling in determining the energetics and the kinetics of electron transfer processes in a membrane protein complex.