5 resultados para Endogenous Cytokinins
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
A new formulate containing citokinins, that is commercialized as Cytokin, has been introduced as dormancy breaking agents. During a three-years study, Cytokin was applied at different concentrations and application times in two producing areas of the Emilia-Romagna region to verify its efficacy as a DBA. Cytokin application increased the bud break and showed a lateral flower thinning effect. Moreover, treated vines showed an earlier and more uniform flowering as compared to control ones. Results obtained on the productive performance revealed a constant positive effect in the fruit fresh weight at harvest. Moreover, Cytokin did not cause any phytotoxicity even at the highest concentrations. Starting from the field observation, which suggested the involvement of cytokinins in kiwifruit bud release from dormancy, 6-BA was applied in open field condition and molecular and histological analyses were carried out in kiwifruit buds collected starting from the endo dormant period up to complete bud break to compare the natural occurring situation to the one induced by exogenous cytokinin application. In details, molecular analyses were set up on to verify the expression of genes involved in the reactivation of cell cycle: cyclin D3, histone H4, cyclin-dependent kinase B, as well as of others which are known to be up regulated during bud release in other species, i.e.isopenteniltransferases (IPTs), which catalyze the first step in the CK biosynthesis, and sucrose synthase 1 and A, which are involved in the sugar supplied. Moreover, histological analyses of the cell division rate in kiwifruit bud apical meristems were performed. These analyses showed a reactivation of the cell divisions during bud release and changes in the expression level of the investigated genes.
Resumo:
Drug addiction manifests clinically as compulsive drug seeking, and cravings that can persist and recur even after extended periods of abstinence. The fundamental principle that unites addictive drugs is that each one enhances synaptic DA by means that dissociate it from normal behavioral control, so that they act to reinforce their own acquisition. Our attention has focused on the study of phenomena associated with the consumption of alcohol and heroin. Alcohol has long been considered an unspecific pharmacological agent, recent molecular pharmacology studies have shown that acts on different primary targets. Through gene expression studies conducted recently it has been shown that the classical opioid receptors are differently involved in the consumption of ethanol and, furthermore, the system nociceptin / NOP, included in the family of endogenous opioid system, and both appear able to play a key role in the initiation of alcohol use in rodents. What emerges is that manipulation of the opioid system, nociceptin, may be useful in the treatment of addictions and there are several evidences that support the use of this strategy. The linkage between gene expression alterations and epigenetic modulation in PDYN and PNOC promoters following alcohol treatment confirm the possible chromatin remodeling mechanism already proposed for alcoholism. In the second part of present study, we also investigated alterations in signaling molecules directly associated with MAPK pathway in a unique collection of postmortem brains from heroin abusers. The interest was focused on understanding the effects that prolonged exposure of heroin can cause in an individual, over the entire MAPK cascade and consequently on the transcription factor ELK1, which is regulated by this pathway. We have shown that the activation of ERK1/2 resulting in Elk-1 phosphorylation in striatal neurons supporting the hypothesis that prolonged exposure to substance abuse causes a dysregulation of MAPK pathway.
Resumo:
The primary aim was to evaluate the effect of 1-ethyl-3-(3-dimethylamino-propyl) carbodiimide (EDC) on endogenous enzymatic activity within radicular dentin and push-out bond strength of adhesively luted fiber posts, at baseline and after artificial aging. Additionally, the effect of different cementation strategies on endogenous enzymatic activity and fiber post retention was evaluated. The experiment was carried out on extracted human teeth, following endodontic treatment and fiber post cementation. Three cementation strategies were performed: resin cement in combination with etch-and-rinse (EAR) adhesive system, with self-etch (SE) system and self-adhesive (SE) cement. Each of the mentioned strategies had a control and experimental (EDC) group in which root canal was irrigated with 0.3M EDC for 1 minute. The push-out bond strength test was performed 24h after cementation and after 40.000 thermocycles. In order to investigate the effect of EDC and different cementation strategies, in situ zymography analyses of the resin-dentin interfaces were conducted. Statistical analyses were conducted with the software Stata 12.0 (Stata Corp, College Station, Texas, USA) and the significance was set for p<0.05. The results of statistical analysis (ANOVA) showed that the variables “EDC”, “root region” and “artificial aging” significantly influenced fiber posts’ retention to root canal (p<0.05). The highest values were observed in coronal third. The mean values observed after artificial aging were lower when compared to baseline, however EDC was effective in preserving bond strength. The level of enzymatic activity varied between the groups and EDC had a beneficial effect on silencing the enzymatic activity. Within the limitations of the study, it was concluded that the choice of cementation strategy did not influence posts’ retention, while EDC contributed to the preservation of bond strength after artificial aging and reduced enzymatic activity within radicular dentin. In vivo trials are necessary to confirm the results of this in vitro study.
Resumo:
Salient stimuli, like sudden changes in the environment or emotional stimuli, generate a priority signal that captures attention even if they are task-irrelevant. However, to achieve goal-driven behavior, we need to ignore them and to avoid being distracted. It is generally agreed that top-down factors can help us to filter out distractors. A fundamental question is how and at which stage of processing the rejection of distractors is achieved. Two circumstances under which the allocation of attention to distractors is supposed to be prevented are represented by the case in which distractors occur at an unattended location (as determined by the deployment of endogenous spatial attention) and when the amount of visual working memory resources is reduced by an ongoing task. The present thesis is focused on the impact of these factors on three sources of distraction, namely auditory and visual onsets (Experiments 1 and 2, respectively) and pleasant scenes (Experiment 3). In the first two studies we recorded neural correlates of distractor processing (i.e., Event-Related Potentials), whereas in the last study we used interference effects on behavior (i.e., a slowing down of response times on a simultaneous task) to index distraction. Endogenous spatial attention reduced distraction by auditory stimuli and eliminated distraction by visual onsets. Differently, visual working memory load only affected the processing of visual onsets. Emotional interference persisted even when scenes occurred always at unattended locations and when visual working memory was loaded. Altogether, these findings indicate that the ability to detect the location of salient task-irrelevant sounds and identify the affective significance of natural scenes is preserved even when the amount of visual working memory resources is reduced by an ongoing task and when endogenous attention is elsewhere directed. However, these results also indicate that the processing of auditory and visual distractors is not entirely automatic.