23 resultados para Empirical Flow Models
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The presented study carried out an analysis on rural landscape changes. In particular the study focuses on the understanding of driving forces acting on the rural built environment using a statistical spatial model implemented through GIS techniques. It is well known that the study of landscape changes is essential for a conscious decision making in land planning. From a bibliography review results a general lack of studies dealing with the modeling of rural built environment and hence a theoretical modelling approach for such purpose is needed. The advancement in technology and modernity in building construction and agriculture have gradually changed the rural built environment. In addition, the phenomenon of urbanization of a determined the construction of new volumes that occurred beside abandoned or derelict rural buildings. Consequently there are two types of transformation dynamics affecting mainly the rural built environment that can be observed: the conversion of rural buildings and the increasing of building numbers. It is the specific aim of the presented study to propose a methodology for the development of a spatial model that allows the identification of driving forces that acted on the behaviours of the building allocation. In fact one of the most concerning dynamic nowadays is related to an irrational expansion of buildings sprawl across landscape. The proposed methodology is composed by some conceptual steps that cover different aspects related to the development of a spatial model: the selection of a response variable that better describe the phenomenon under study, the identification of possible driving forces, the sampling methodology concerning the collection of data, the most suitable algorithm to be adopted in relation to statistical theory and method used, the calibration process and evaluation of the model. A different combination of factors in various parts of the territory generated favourable or less favourable conditions for the building allocation and the existence of buildings represents the evidence of such optimum. Conversely the absence of buildings expresses a combination of agents which is not suitable for building allocation. Presence or absence of buildings can be adopted as indicators of such driving conditions, since they represent the expression of the action of driving forces in the land suitability sorting process. The existence of correlation between site selection and hypothetical driving forces, evaluated by means of modeling techniques, provides an evidence of which driving forces are involved in the allocation dynamic and an insight on their level of influence into the process. GIS software by means of spatial analysis tools allows to associate the concept of presence and absence with point futures generating a point process. Presence or absence of buildings at some site locations represent the expression of these driving factors interaction. In case of presences, points represent locations of real existing buildings, conversely absences represent locations were buildings are not existent and so they are generated by a stochastic mechanism. Possible driving forces are selected and the existence of a causal relationship with building allocations is assessed through a spatial model. The adoption of empirical statistical models provides a mechanism for the explanatory variable analysis and for the identification of key driving variables behind the site selection process for new building allocation. The model developed by following the methodology is applied to a case study to test the validity of the methodology. In particular the study area for the testing of the methodology is represented by the New District of Imola characterized by a prevailing agricultural production vocation and were transformation dynamic intensively occurred. The development of the model involved the identification of predictive variables (related to geomorphologic, socio-economic, structural and infrastructural systems of landscape) capable of representing the driving forces responsible for landscape changes.. The calibration of the model is carried out referring to spatial data regarding the periurban and rural area of the study area within the 1975-2005 time period by means of Generalised linear model. The resulting output from the model fit is continuous grid surface where cells assume values ranged from 0 to 1 of probability of building occurrences along the rural and periurban area of the study area. Hence the response variable assesses the changes in the rural built environment occurred in such time interval and is correlated to the selected explanatory variables by means of a generalized linear model using logistic regression. Comparing the probability map obtained from the model to the actual rural building distribution in 2005, the interpretation capability of the model can be evaluated. The proposed model can be also applied to the interpretation of trends which occurred in other study areas, and also referring to different time intervals, depending on the availability of data. The use of suitable data in terms of time, information, and spatial resolution and the costs related to data acquisition, pre-processing, and survey are among the most critical aspects of model implementation. Future in-depth studies can focus on using the proposed model to predict short/medium-range future scenarios for the rural built environment distribution in the study area. In order to predict future scenarios it is necessary to assume that the driving forces do not change and that their levels of influence within the model are not far from those assessed for the time interval used for the calibration.
Resumo:
The "sustainability" concept relates to the prolonging of human economic systems with as little detrimental impact on ecological systems as possible. Construction that exhibits good environmental stewardship and practices that conserve resources in a manner that allow growth and development to be sustained for the long-term without degrading the environment are indispensable in a developed society. Past, current and future advancements in asphalt as an environmentally sustainable paving material are especially important because the quantities of asphalt used annually in Europe as well as in the U.S. are large. The asphalt industry is still developing technological improvements that will reduce the environmental impact without affecting the final mechanical performance. Warm mix asphalt (WMA) is a type of asphalt mix requiring lower production temperatures compared to hot mix asphalt (HMA), while aiming to maintain the desired post construction properties of traditional HMA. Lowering the production temperature reduce the fuel usage and the production of emissions therefore and that improve conditions for workers and supports the sustainable development. Even the crumb-rubber modifier (CRM), with shredded automobile tires and used in the United States since the mid 1980s, has proven to be an environmentally friendly alternative to conventional asphalt pavement. Furthermore, the use of waste tires is not only relevant in an environmental aspect but also for the engineering properties of asphalt [Pennisi E., 1992]. This research project is aimed to demonstrate the dual value of these Asphalt Mixes in regards to the environmental and mechanical performance and to suggest a low environmental impact design procedure. In fact, the use of eco-friendly materials is the first phase towards an eco-compatible design but it cannot be the only step. The eco-compatible approach should be extended also to the design method and material characterization because only with these phases is it possible to exploit the maximum potential properties of the used materials. Appropriate asphalt concrete characterization is essential and vital for realistic performance prediction of asphalt concrete pavements. Volumetric (Mix design) and mechanical (Permanent deformation and Fatigue performance) properties are important factors to consider. Moreover, an advanced and efficient design method is necessary in order to correctly use the material. A design method such as a Mechanistic-Empirical approach, consisting of a structural model capable of predicting the state of stresses and strains within the pavement structure under the different traffic and environmental conditions, was the application of choice. In particular this study focus on the CalME and its Incremental-Recursive (I-R) procedure, based on damage models for fatigue and permanent shear strain related to the surface cracking and to the rutting respectively. It works in increments of time and, using the output from one increment, recursively, as input to the next increment, predicts the pavement conditions in terms of layer moduli, fatigue cracking, rutting and roughness. This software procedure was adopted in order to verify the mechanical properties of the study mixes and the reciprocal relationship between surface layer and pavement structure in terms of fatigue and permanent deformation with defined traffic and environmental conditions. The asphalt mixes studied were used in a pavement structure as surface layer of 60 mm thickness. The performance of the pavement was compared to the performance of the same pavement structure where different kinds of asphalt concrete were used as surface layer. In comparison to a conventional asphalt concrete, three eco-friendly materials, two warm mix asphalt and a rubberized asphalt concrete, were analyzed. The First Two Chapters summarize the necessary steps aimed to satisfy the sustainable pavement design procedure. In Chapter I the problem of asphalt pavement eco-compatible design was introduced. The low environmental impact materials such as the Warm Mix Asphalt and the Rubberized Asphalt Concrete were described in detail. In addition the value of a rational asphalt pavement design method was discussed. Chapter II underlines the importance of a deep laboratory characterization based on appropriate materials selection and performance evaluation. In Chapter III, CalME is introduced trough a specific explanation of the different equipped design approaches and specifically explaining the I-R procedure. In Chapter IV, the experimental program is presented with a explanation of test laboratory devices adopted. The Fatigue and Rutting performances of the study mixes are shown respectively in Chapter V and VI. Through these laboratory test data the CalME I-R models parameters for Master Curve, fatigue damage and permanent shear strain were evaluated. Lastly, in Chapter VII, the results of the asphalt pavement structures simulations with different surface layers were reported. For each pavement structure, the total surface cracking, the total rutting, the fatigue damage and the rutting depth in each bound layer were analyzed.
Resumo:
The present work concerns with the study of debris flows and, in particular, with the related hazard in the Alpine Environment. During the last years several methodologies have been developed to evaluate hazard associated to such a complex phenomenon, whose velocity, impacting force and inappropriate temporal prediction are responsible of the related high hazard level. This research focuses its attention on the depositional phase of debris flows through the application of a numerical model (DFlowz), and on hazard evaluation related to watersheds morphometric, morphological and geological characterization. The main aims are to test the validity of DFlowz simulations and assess sources of errors in order to understand how the empirical uncertainties influence the predictions; on the other side the research concerns with the possibility of performing hazard analysis starting from the identification of susceptible debris flow catchments and definition of their activity level. 25 well documented debris flow events have been back analyzed with the model DFlowz (Berti and Simoni, 2007): derived form the implementation of the empirical relations between event volume and planimetric and cross section inundated areas, the code allows to delineate areas affected by an event by taking into account information about volume, preferential flow path and digital elevation model (DEM) of fan area. The analysis uses an objective methodology for evaluating the accuracy of the prediction and involve the calibration of the model based on factors describing the uncertainty associated to the semi empirical relationships. The general assumptions on which the model is based have been verified although the predictive capabilities are influenced by the uncertainties of the empirical scaling relationships, which have to be necessarily taken into account and depend mostly on errors concerning deposited volume estimation. In addition, in order to test prediction capabilities of physical-based models, some events have been simulated through the use of RAMMS (RApid Mass MovementS). The model, which has been developed by the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL) in Birmensdorf and the Swiss Federal Institute for Snow and Avalanche Research (SLF) takes into account a one-phase approach based on Voellmy rheology (Voellmy, 1955; Salm et al., 1990). The input file combines the total volume of the debris flow located in a release area with a mean depth. The model predicts the affected area, the maximum depth and the flow velocity in each cell of the input DTM. Relatively to hazard analysis related to watersheds characterization, the database collected by the Alto Adige Province represents an opportunity to examine debris-flow sediment dynamics at the regional scale and analyze lithologic controls. With the aim of advancing current understandings about debris flow, this study focuses on 82 events in order to characterize the topographic conditions associated with their initiation , transportation and deposition, seasonal patterns of occurrence and examine the role played by bedrock geology on sediment transfer.
Resumo:
Understanding why market manipulation is conducted, under which conditions it is the most profitable and investigating the magnitude of these practices are crucial questions for financial regulators. Closing price manipulation induced by derivatives’ expiration is the primary subject of this thesis. The first chapter provides a mathematical framework in continuous time to study the incentive to manipulate a set of securities induced by a derivative position. An agent holding a European-type contingent claim, depending on the price of a basket of underlying securities, is considered. The agent can affect the price of the underlying securities by trading on each of them before expiration. The elements of novelty are at least twofold: (1) a multi-asset market is considered; (2) the problem is solved by means of both classic optimisation and stochastic control techniques. Both linear and option payoffs are considered. In the second chapter an empirical investigation is conducted on the existence of expiration day effects on the UK equity market. Intraday data on FTSE 350 stocks over a six-year period from 2015-2020 are used. The results show that the expiration of index derivatives is associated with a rise in both trading activity and volatility, together with significant price distortions. The expiration of single stock options appears to have little to no impact on the underlying securities. The last chapter examines the existence of patterns in line with closing price manipulation of UK stocks on option expiration days. The main contributions are threefold: (1) this is one of the few empirical studies on manipulation induced by the options market; (2) proprietary equity orderbook and transaction data sets are used to define manipulation proxies, providing a more detailed analysis; (3) the behaviour of proprietary trading firms is studied. Despite the industry concerns, no evidence is found of this type of manipulative behaviour.
Resumo:
It is not unknown that the evolution of firm theories has been developed along a path paved by an increasing awareness of the organizational structure importance. From the early “neoclassical” conceptualizations that intended the firm as a rational actor whose aim is to produce that amount of output, given the inputs at its disposal and in accordance to technological or environmental constraints, which maximizes the revenue (see Boulding, 1942 for a past mid century state of the art discussion) to the knowledge based theory of the firm (Nonaka & Takeuchi, 1995; Nonaka & Toyama, 2005), which recognizes in the firm a knnowledge creating entity, with specific organizational capabilities (Teece, 1996; Teece & Pisano, 1998) that allow to sustaine competitive advantages. Tracing back a map of the theory of the firm evolution, taking into account the several perspectives adopted in the history of thought, would take the length of many books. Because of that a more fruitful strategy is circumscribing the focus of the description of the literature evolution to one flow connected to a crucial question about the nature of firm’s behaviour and about the determinants of competitive advantages. In so doing I adopt a perspective that allows me to consider the organizational structure of the firm as an element according to which the different theories can be discriminated. The approach adopted starts by considering the drawbacks of the standard neoclassical theory of the firm. Discussing the most influential theoretical approaches I end up with a close examination of the knowledge based perspective of the firm. Within this perspective the firm is considered as a knowledge creating entity that produce and mange knowledge (Nonaka, Toyama, & Nagata, 2000; Nonaka & Toyama, 2005). In a knowledge intensive organization, knowledge is clearly embedded for the most part in the human capital of the individuals that compose such an organization. In a knowledge based organization, the management, in order to cope with knowledge intensive productions, ought to develop and accumulate capabilities that shape the organizational forms in a way that relies on “cross-functional processes, extensive delayering and empowerment” (Foss 2005, p.12). This mechanism contributes to determine the absorptive capacity of the firm towards specific technologies and, in so doing, it also shape the technological trajectories along which the firm moves. After having recognized the growing importance of the firm’s organizational structure in the theoretical literature concerning the firm theory, the subsequent point of the analysis is that of providing an overview of the changes that have been occurred at micro level to the firm’s organization of production. The economic actors have to deal with challenges posed by processes of internationalisation and globalization, increased and increasing competitive pressure of less developed countries on low value added production activities, changes in technologies and increased environmental turbulence and volatility. As a consequence, it has been widely recognized that the main organizational models of production that fitted well in the 20th century are now partially inadequate and processes aiming to reorganize production activities have been widespread across several economies in recent years. Recently, the emergence of a “new” form of production organization has been proposed both by scholars, practitioners and institutions: the most prominent characteristic of such a model is its recognition of the importance of employees commitment and involvement. As a consequence it is characterized by a strong accent on the human resource management and on those practices that aim to widen the autonomy and responsibility of the workers as well as increasing their commitment to the organization (Osterman, 1994; 2000; Lynch, 2007). This “model” of production organization is by many defined as High Performance Work System (HPWS). Despite the increasing diffusion of workplace practices that may be inscribed within the concept of HPWS in western countries’ companies, it is an hazard, to some extent, to speak about the emergence of a “new organizational paradigm”. The discussion about organizational changes and the diffusion of HPWP the focus cannot abstract from a discussion about the industrial relations systems, with a particular accent on the employment relationships, because of their relevance, in the same way as production organization, in determining two major outcomes of the firm: innovation and economic performances. The argument is treated starting from the issue of the Social Dialogue at macro level, both in an European perspective and Italian perspective. The model of interaction between the social parties has repercussions, at micro level, on the employment relationships, that is to say on the relations between union delegates and management or workers and management. Finding economic and social policies capable of sustaining growth and employment within a knowledge based scenario is likely to constitute the major challenge for the next generation of social pacts, which are the main social dialogue outcomes. As Acocella and Leoni (2007) put forward the social pacts may constitute an instrument to trade wage moderation for high intensity in ICT, organizational and human capital investments. Empirical evidence, especially focused on the micro level, about the positive relation between economic growth and new organizational designs coupled with ICT adoption and non adversarial industrial relations is growing. Partnership among social parties may become an instrument to enhance firm competitiveness. The outcome of the discussion is the integration of organizational changes and industrial relations elements within a unified framework: the HPWS. Such a choice may help in disentangling the potential existence of complementarities between these two aspects of the firm internal structure on economic and innovative performance. With the third chapter starts the more original part of the thesis. The data utilized in order to disentangle the relations between HPWS practices, innovation and economic performance refer to the manufacturing firms of the Reggio Emilia province with more than 50 employees. The data have been collected through face to face interviews both to management (199 respondents) and to union representatives (181 respondents). Coupled with the cross section datasets a further data source is constituted by longitudinal balance sheets (1994-2004). Collecting reliable data that in turn provide reliable results needs always a great effort to which are connected uncertain results. Data at micro level are often subjected to a trade off: the wider is the geographical context to which the population surveyed belong the lesser is the amount of information usually collected (low level of resolution); the narrower is the focus on specific geographical context, the higher is the amount of information usually collected (high level of resolution). For the Italian case the evidence about the diffusion of HPWP and their effects on firm performances is still scanty and usually limited to local level studies (Cristini, et al., 2003). The thesis is also devoted to the deepening of an argument of particular interest: the existence of complementarities between the HPWS practices. It has been widely shown by empirical evidence that when HPWP are adopted in bundles they are more likely to impact on firm’s performances than when adopted in isolation (Ichniowski, Prennushi, Shaw, 1997). Is it true also for the local production system of Reggio Emilia? The empirical analysis has the precise aim of providing evidence on the relations between the HPWS dimensions and the innovative and economic performances of the firm. As far as the first line of analysis is concerned it must to be stressed the fundamental role that innovation plays in the economy (Geroski & Machin, 1993; Stoneman & Kwoon 1994, 1996; OECD, 2005; EC, 2002). On this point the evidence goes from the traditional innovations, usually approximated by R&D investment expenditure or number of patents, to the introduction and adoption of ICT, in the recent years (Brynjolfsson & Hitt, 2000). If innovation is important then it is critical to analyse its determinants. In this work it is hypothesised that organizational changes and firm level industrial relations/employment relations aspects that can be put under the heading of HPWS, influence the propensity to innovate in product, process and quality of the firm. The general argument may goes as follow: changes in production management and work organization reconfigure the absorptive capacity of the firm towards specific technologies and, in so doing, they shape the technological trajectories along which the firm moves; cooperative industrial relations may lead to smother adoption of innovations, because not contrasted by unions. From the first empirical chapter emerges that the different types of innovations seem to respond in different ways to the HPWS variables. The underlying processes of product, process and quality innovations are likely to answer to different firm’s strategies and needs. Nevertheless, it is possible to extract some general results in terms of the most influencing HPWS factors on innovative performance. The main three aspects are training coverage, employees involvement and the diffusion of bonuses. These variables show persistent and significant relations with all the three innovation types. The same do the components having such variables at their inside. In sum the aspects of the HPWS influence the propensity to innovate of the firm. At the same time, emerges a quite neat (although not always strong) evidence of complementarities presence between HPWS practices. In terns of the complementarity issue it can be said that some specific complementarities exist. Training activities, when adopted and managed in bundles, are related to the propensity to innovate. Having a sound skill base may be an element that enhances the firm’s capacity to innovate. It may enhance both the capacity to absorbe exogenous innovation and the capacity to endogenously develop innovations. The presence and diffusion of bonuses and the employees involvement also spur innovative propensity. The former because of their incentive nature and the latter because direct workers participation may increase workers commitment to the organizationa and thus their willingness to support and suggest inovations. The other line of analysis provides results on the relation between HPWS and economic performances of the firm. There have been a bulk of international empirical studies on the relation between organizational changes and economic performance (Black & Lynch 2001; Zwick 2004; Janod & Saint-Martin 2004; Huselid 1995; Huselid & Becker 1996; Cappelli & Neumark 2001), while the works aiming to capture the relations between economic performance and unions or industrial relations aspects are quite scant (Addison & Belfield, 2001; Pencavel, 2003; Machin & Stewart, 1990; Addison, 2005). In the empirical analysis the integration of the two main areas of the HPWS represent a scarcely exploited approach in the panorama of both national and international empirical studies. As remarked by Addison “although most analysis of workers representation and employee involvement/high performance work practices have been conducted in isolation – while sometimes including the other as controls – research is beginning to consider their interactions” (Addison, 2005, p.407). The analysis conducted exploiting temporal lags between dependent and covariates, possibility given by the merger of cross section and panel data, provides evidence in favour of the existence of HPWS practices impact on firm’s economic performance, differently measured. Although it does not seem to emerge robust evidence on the existence of complementarities among HPWS aspects on performances there is evidence of a general positive influence of the single practices. The results are quite sensible to the time lags, inducing to hypothesize that time varying heterogeneity is an important factor in determining the impact of organizational changes on economic performance. The implications of the analysis can be of help both to management and local level policy makers. Although the results are not simply extendible to other local production systems it may be argued that for contexts similar to the Reggio Emilia province, characterized by the presence of small and medium enterprises organized in districts and by a deep rooted unionism, with strong supporting institutions, the results and the implications here obtained can also fit well. However, a hope for future researches on the subject treated in the present work is that of collecting good quality information over wider geographical areas, possibly at national level, and repeated in time. Only in this way it is possible to solve the Gordian knot about the linkages between innovation, performance, high performance work practices and industrial relations.
Resumo:
Computer aided design of Monolithic Microwave Integrated Circuits (MMICs) depends critically on active device models that are accurate, computationally efficient, and easily extracted from measurements or device simulators. Empirical models of active electron devices, which are based on actual device measurements, do not provide a detailed description of the electron device physics. However they are numerically efficient and quite accurate. These characteristics make them very suitable for MMIC design in the framework of commercially available CAD tools. In the empirical model formulation it is very important to separate linear memory effects (parasitic effects) from the nonlinear effects (intrinsic effects). Thus an empirical active device model is generally described by an extrinsic linear part which accounts for the parasitic passive structures connecting the nonlinear intrinsic electron device to the external world. An important task circuit designers deal with is evaluating the ultimate potential of a device for specific applications. In fact once the technology has been selected, the designer would choose the best device for the particular application and the best device for the different blocks composing the overall MMIC. Thus in order to accurately reproducing the behaviour of different-in-size devices, good scalability properties of the model are necessarily required. Another important aspect of empirical modelling of electron devices is the mathematical (or equivalent circuit) description of the nonlinearities inherently associated with the intrinsic device. Once the model has been defined, the proper measurements for the characterization of the device are performed in order to identify the model. Hence, the correct measurement of the device nonlinear characteristics (in the device characterization phase) and their reconstruction (in the identification or even simulation phase) are two of the more important aspects of empirical modelling. This thesis presents an original contribution to nonlinear electron device empirical modelling treating the issues of model scalability and reconstruction of the device nonlinear characteristics. The scalability of an empirical model strictly depends on the scalability of the linear extrinsic parasitic network, which should possibly maintain the link between technological process parameters and the corresponding device electrical response. Since lumped parasitic networks, together with simple linear scaling rules, cannot provide accurate scalable models, either complicate technology-dependent scaling rules or computationally inefficient distributed models are available in literature. This thesis shows how the above mentioned problems can be avoided through the use of commercially available electromagnetic (EM) simulators. They enable the actual device geometry and material stratification, as well as losses in the dielectrics and electrodes, to be taken into account for any given device structure and size, providing an accurate description of the parasitic effects which occur in the device passive structure. It is shown how the electron device behaviour can be described as an equivalent two-port intrinsic nonlinear block connected to a linear distributed four-port passive parasitic network, which is identified by means of the EM simulation of the device layout, allowing for better frequency extrapolation and scalability properties than conventional empirical models. Concerning the issue of the reconstruction of the nonlinear electron device characteristics, a data approximation algorithm has been developed for the exploitation in the framework of empirical table look-up nonlinear models. Such an approach is based on the strong analogy between timedomain signal reconstruction from a set of samples and the continuous approximation of device nonlinear characteristics on the basis of a finite grid of measurements. According to this criterion, nonlinear empirical device modelling can be carried out by using, in the sampled voltage domain, typical methods of the time-domain sampling theory.
Resumo:
The Assimilation in the Unstable Subspace (AUS) was introduced by Trevisan and Uboldi in 2004, and developed by Trevisan, Uboldi and Carrassi, to minimize the analysis and forecast errors by exploiting the flow-dependent instabilities of the forecast-analysis cycle system, which may be thought of as a system forced by observations. In the AUS scheme the assimilation is obtained by confining the analysis increment in the unstable subspace of the forecast-analysis cycle system so that it will have the same structure of the dominant instabilities of the system. The unstable subspace is estimated by Breeding on the Data Assimilation System (BDAS). AUS- BDAS has already been tested in realistic models and observational configurations, including a Quasi-Geostrophicmodel and a high dimensional, primitive equation ocean model; the experiments include both fixed and“adaptive”observations. In these contexts, the AUS-BDAS approach greatly reduces the analysis error, with reasonable computational costs for data assimilation with respect, for example, to a prohibitive full Extended Kalman Filter. This is a follow-up study in which we revisit the AUS-BDAS approach in the more basic, highly nonlinear Lorenz 1963 convective model. We run observation system simulation experiments in a perfect model setting, and with two types of model error as well: random and systematic. In the different configurations examined, and in a perfect model setting, AUS once again shows better efficiency than other advanced data assimilation schemes. In the present study, we develop an iterative scheme that leads to a significant improvement of the overall assimilation performance with respect also to standard AUS. In particular, it boosts the efficiency of regime’s changes tracking, with a low computational cost. Other data assimilation schemes need estimates of ad hoc parameters, which have to be tuned for the specific model at hand. In Numerical Weather Prediction models, tuning of parameters — and in particular an estimate of the model error covariance matrix — may turn out to be quite difficult. Our proposed approach, instead, may be easier to implement in operational models.
Resumo:
This Doctoral Thesis focuses on the study of individual behaviours as a result of organizational affiliation. The objective is to assess the Entrepreneurial Orientation of individuals proving the existence of a set of antecedents to that measure returning a structural model of its micro-foundation. Relying on the developed measurement model, I address the issue whether some Entrepreneurs experience different behaviours as a result of their academic affiliation, comparing a sample of ‘Academic Entrepreneurs’ to a control sample of ‘Private Entrepreneurs’ affiliated to a matched sample of Academic Spin-offs and Private Start-ups. Building on the Theory of the Planned Behaviour, proposed by Ajzen (1991), I present a model of causal antecedents of Entrepreneurial Orientation on constructs extensively used and validated, both from a theoretical and empirical perspective, in sociological and psychological studies. I focus my investigation on five major domains: (a) Situationally Specific Motivation, (b) Personal Traits and Characteristics, (c) Individual Skills, (d) Perception of the Business Environment and (e) Entrepreneurial Orientation Related Dimensions. I rely on a sample of 200 Entrepreneurs, affiliated to a matched sample of 72 Academic Spin-offs and Private Start-ups. Firms are matched by Industry, Year of Establishment and Localization and they are all located in the Emilia Romagna region, in northern Italy. I’ve gathered data by face to face interviews and used a Structural Equation Modeling technique (Lisrel 8.80, Joreskog, K., & Sorbom, D. 2006) to perform the empirical analysis. The results show that Entrepreneurial Orientation is a multi-dimensional micro-founded construct which can be better represented by a Second-Order Model. The t-tests on the latent means reveal that the Academic Entrepreneurs differ in terms of: Risk taking, Passion, Procedural and Organizational Skills, Perception of the Government, Context and University Supports. The Structural models also reveal that the main differences between the two groups lay in the predicting power of Technical Skills, Perceived Context Support and Perceived University Support in explaining the Entrepreneurial Orientation Related Dimensions.
Resumo:
In the last years of research, I focused my studies on different physiological problems. Together with my supervisors, I developed/improved different mathematical models in order to create valid tools useful for a better understanding of important clinical issues. The aim of all this work is to develop tools for learning and understanding cardiac and cerebrovascular physiology as well as pathology, generating research questions and developing clinical decision support systems useful for intensive care unit patients. I. ICP-model Designed for Medical Education We developed a comprehensive cerebral blood flow and intracranial pressure model to simulate and study the complex interactions in cerebrovascular dynamics caused by multiple simultaneous alterations, including normal and abnormal functional states of auto-regulation of the brain. Individual published equations (derived from prior animal and human studies) were implemented into a comprehensive simulation program. Included in the normal physiological modelling was: intracranial pressure, cerebral blood flow, blood pressure, and carbon dioxide (CO2) partial pressure. We also added external and pathological perturbations, such as head up position and intracranial haemorrhage. The model performed clinically realistically given inputs of published traumatized patients, and cases encountered by clinicians. The pulsatile nature of the output graphics was easy for clinicians to interpret. The manoeuvres simulated include changes of basic physiological inputs (e.g. blood pressure, central venous pressure, CO2 tension, head up position, and respiratory effects on vascular pressures) as well as pathological inputs (e.g. acute intracranial bleeding, and obstruction of cerebrospinal outflow). Based on the results, we believe the model would be useful to teach complex relationships of brain haemodynamics and study clinical research questions such as the optimal head-up position, the effects of intracranial haemorrhage on cerebral haemodynamics, as well as the best CO2 concentration to reach the optimal compromise between intracranial pressure and perfusion. We believe this model would be useful for both beginners and advanced learners. It could be used by practicing clinicians to model individual patients (entering the effects of needed clinical manipulations, and then running the model to test for optimal combinations of therapeutic manoeuvres). II. A Heterogeneous Cerebrovascular Mathematical Model Cerebrovascular pathologies are extremely complex, due to the multitude of factors acting simultaneously on cerebral haemodynamics. In this work, the mathematical model of cerebral haemodynamics and intracranial pressure dynamics, described in the point I, is extended to account for heterogeneity in cerebral blood flow. The model includes the Circle of Willis, six regional districts independently regulated by autoregulation and CO2 reactivity, distal cortical anastomoses, venous circulation, the cerebrospinal fluid circulation, and the intracranial pressure-volume relationship. Results agree with data in the literature and highlight the existence of a monotonic relationship between transient hyperemic response and the autoregulation gain. During unilateral internal carotid artery stenosis, local blood flow regulation is progressively lost in the ipsilateral territory with the presence of a steal phenomenon, while the anterior communicating artery plays the major role to redistribute the available blood flow. Conversely, distal collateral circulation plays a major role during unilateral occlusion of the middle cerebral artery. In conclusion, the model is able to reproduce several different pathological conditions characterized by heterogeneity in cerebrovascular haemodynamics and can not only explain generalized results in terms of physiological mechanisms involved, but also, by individualizing parameters, may represent a valuable tool to help with difficult clinical decisions. III. Effect of Cushing Response on Systemic Arterial Pressure. During cerebral hypoxic conditions, the sympathetic system causes an increase in arterial pressure (Cushing response), creating a link between the cerebral and the systemic circulation. This work investigates the complex relationships among cerebrovascular dynamics, intracranial pressure, Cushing response, and short-term systemic regulation, during plateau waves, by means of an original mathematical model. The model incorporates the pulsating heart, the pulmonary circulation and the systemic circulation, with an accurate description of the cerebral circulation and the intracranial pressure dynamics (same model as in the first paragraph). Various regulatory mechanisms are included: cerebral autoregulation, local blood flow control by oxygen (O2) and/or CO2 changes, sympathetic and vagal regulation of cardiovascular parameters by several reflex mechanisms (chemoreceptors, lung-stretch receptors, baroreceptors). The Cushing response has been described assuming a dramatic increase in sympathetic activity to vessels during a fall in brain O2 delivery. With this assumption, the model is able to simulate the cardiovascular effects experimentally observed when intracranial pressure is artificially elevated and maintained at constant level (arterial pressure increase and bradicardia). According to the model, these effects arise from the interaction between the Cushing response and the baroreflex response (secondary to arterial pressure increase). Then, patients with severe head injury have been simulated by reducing intracranial compliance and cerebrospinal fluid reabsorption. With these changes, oscillations with plateau waves developed. In these conditions, model results indicate that the Cushing response may have both positive effects, reducing the duration of the plateau phase via an increase in cerebral perfusion pressure, and negative effects, increasing the intracranial pressure plateau level, with a risk of greater compression of the cerebral vessels. This model may be of value to assist clinicians in finding the balance between clinical benefits of the Cushing response and its shortcomings. IV. Comprehensive Cardiopulmonary Simulation Model for the Analysis of Hypercapnic Respiratory Failure We developed a new comprehensive cardiopulmonary model that takes into account the mutual interactions between the cardiovascular and the respiratory systems along with their short-term regulatory mechanisms. The model includes the heart, systemic and pulmonary circulations, lung mechanics, gas exchange and transport equations, and cardio-ventilatory control. Results show good agreement with published patient data in case of normoxic and hyperoxic hypercapnia simulations. In particular, simulations predict a moderate increase in mean systemic arterial pressure and heart rate, with almost no change in cardiac output, paralleled by a relevant increase in minute ventilation, tidal volume and respiratory rate. The model can represent a valid tool for clinical practice and medical research, providing an alternative way to experience-based clinical decisions. In conclusion, models are not only capable of summarizing current knowledge, but also identifying missing knowledge. In the former case they can serve as training aids for teaching the operation of complex systems, especially if the model can be used to demonstrate the outcome of experiments. In the latter case they generate experiments to be performed to gather the missing data.
Resumo:
An extensive sample (2%) of private vehicles in Italy are equipped with a GPS device that periodically measures their position and dynamical state for insurance purposes. Having access to this type of data allows to develop theoretical and practical applications of great interest: the real-time reconstruction of traffic state in a certain region, the development of accurate models of vehicle dynamics, the study of the cognitive dynamics of drivers. In order for these applications to be possible, we first need to develop the ability to reconstruct the paths taken by vehicles on the road network from the raw GPS data. In fact, these data are affected by positioning errors and they are often very distanced from each other (~2 Km). For these reasons, the task of path identification is not straightforward. This thesis describes the approach we followed to reliably identify vehicle paths from this kind of low-sampling data. The problem of matching data with roads is solved with a bayesian approach of maximum likelihood. While the identification of the path taken between two consecutive GPS measures is performed with a specifically developed optimal routing algorithm, based on A* algorithm. The procedure was applied on an off-line urban data sample and proved to be robust and accurate. Future developments will extend the procedure to real-time execution and nation-wide coverage.
Resumo:
A fundamental gap in the current understanding of collapsed structures in the universe concerns the thermodynamical evolution of the ordinary, baryonic component. Unopposed radiative cooling of plasma would lead to the cooling catastrophe, a massive inflow of condensing gas toward the centre of galaxies, groups and clusters. The last generation of multiwavelength observations has radically changed our view on baryons, suggesting that the heating linked to the active galactic nucleus (AGN) may be the balancing counterpart of cooling. In this Thesis, I investigate the engine of the heating regulated by the central black hole. I argue that the mechanical feedback, based on massive subrelativistic outflows, is the key to solving the cooling flow problem, i.e. dramatically quenching the cooling rates for several billion years without destroying the cool-core structure. Using an upgraded version of the parallel 3D hydrodynamic code FLASH, I show that anisotropic AGN outflows can further reproduce fundamental observed features, such as buoyant bubbles, cocoon shocks, sonic ripples, metals dredge-up, and subsonic turbulence. The latter is an essential ingredient to drive nonlinear thermal instabilities, which cause cold gas condensation, a residual of the quenched cooling flow and, later, fuel for the AGN feedback engine. The self-regulated outflows are systematically tested on the scales of massive clusters, groups and isolated elliptical galaxies: in lighter less bound objects the feedback needs to be gentler and less efficient, in order to avoid drastic overheating. In this Thesis, I describe in depth the complex hydrodynamics, involving the coupling of the feedback energy to that of the surrounding hot medium. Finally, I present the merits and flaws of all the proposed models, with a critical eye toward observational concordance.
Resumo:
Flood disasters are a major cause of fatalities and economic losses, and several studies indicate that global flood risk is currently increasing. In order to reduce and mitigate the impact of river flood disasters, the current trend is to integrate existing structural defences with non structural measures. This calls for a wider application of advanced hydraulic models for flood hazard and risk mapping, engineering design, and flood forecasting systems. Within this framework, two different hydraulic models for large scale analysis of flood events have been developed. The two models, named CA2D and IFD-GGA, adopt an integrated approach based on the diffusive shallow water equations and a simplified finite volume scheme. The models are also designed for massive code parallelization, which has a key importance in reducing run times in large scale and high-detail applications. The two models were first applied to several numerical cases, to test the reliability and accuracy of different model versions. Then, the most effective versions were applied to different real flood events and flood scenarios. The IFD-GGA model showed serious problems that prevented further applications. On the contrary, the CA2D model proved to be fast and robust, and able to reproduce 1D and 2D flow processes in terms of water depth and velocity. In most applications the accuracy of model results was good and adequate to large scale analysis. Where complex flow processes occurred local errors were observed, due to the model approximations. However, they did not compromise the correct representation of overall flow processes. In conclusion, the CA model can be a valuable tool for the simulation of a wide range of flood event types, including lowland and flash flood events.
Resumo:
The dissertation is structured in three parts. The first part compares US and EU agricultural policies since the end of WWII. There is not enough evidence for claiming that agricultural support has a negative impact on obesity trends. I discuss the possibility of an exchange in best practices to fight obesity. There are relevant economic, societal and legal differences between the US and the EU. However, partnerships against obesity are welcomed. The second part presents a socio-ecological model of the determinants of obesity. I employ an interdisciplinary model because it captures the simultaneous influence of several variables. Obesity is an interaction of pre-birth, primary and secondary socialization factors. To test the significance of each factor, I use data from the National Longitudinal Survey of Adolescent Health. I compare the average body mass index across different populations. Differences in means are statistically significant. In the last part I use the National Survey of Children Health. I analyze the effect that family characteristics, built environment, cultural norms and individual factors have on the body mass index (BMI). I use Ordered Probit models and I calculate the marginal effects. I use State and ethnicity fixed effects to control for unobserved heterogeneity. I find that southern US States tend have on average a higher probability of being obese. On the ethnicity side, White Americans have a lower BMI respect to Black Americans, Hispanics and American Indians Native Islanders; being Asian is associated with a lower probability of being obese. In neighborhoods where trust level and safety perception are higher, children are less overweight and obese. Similar results are shown for higher level of parental income and education. Breastfeeding has a negative impact. Higher values of measures of behavioral disorders have a positive and significant impact on obesity, as predicted by the theory.
Resumo:
Il modello gravitazionale e' ormai diventato un "cavallo da battaglia" in economia internazionle ed e' comunemente utilizzato nella determinazione dei flussi commerciali. Recentemente, molti studi hanno mostrato l'importanza della dipendenza spaziale, che va' a considerare quegli effetti dovuti al cosiddetto "third country". Intervengono a questo scopo la modellistica e le tecniche di stima di Econometria Spaziale. Verra' fatto uso di tali tecniche allo scopo di stimare con un modello gravitazionale spaziale il commercio internazionale tra paesi dell'OCSE per un panel di 22 anni. L'obiettivo e' quindi duplice: da un lato, si andra' ad applicare le piu' moderne tecniche di Econometria Spaziale, in un campo in cui tali contributi scarseggiano. Dall'altro lato,verra' fornita una interpretazione del comportamento del commercio internazionale tra paesi dell'OCSE, approfondendo gli aspetti relativi all'effetto del"third country" e del fenomeno migratorio. Inoltre , viene proposta un'analisi che ha lo scopo di validare l'ipotesi di omissione della distanza dal modello gravitazione strutturale.
Resumo:
This work presents a comprehensive methodology for the reduction of analytical or numerical stochastic models characterized by uncertain input parameters or boundary conditions. The technique, based on the Polynomial Chaos Expansion (PCE) theory, represents a versatile solution to solve direct or inverse problems related to propagation of uncertainty. The potentiality of the methodology is assessed investigating different applicative contexts related to groundwater flow and transport scenarios, such as global sensitivity analysis, risk analysis and model calibration. This is achieved by implementing a numerical code, developed in the MATLAB environment, presented here in its main features and tested with literature examples. The procedure has been conceived under flexibility and efficiency criteria in order to ensure its adaptability to different fields of engineering; it has been applied to different case studies related to flow and transport in porous media. Each application is associated with innovative elements such as (i) new analytical formulations describing motion and displacement of non-Newtonian fluids in porous media, (ii) application of global sensitivity analysis to a high-complexity numerical model inspired by a real case of risk of radionuclide migration in the subsurface environment, and (iii) development of a novel sensitivity-based strategy for parameter calibration and experiment design in laboratory scale tracer transport.