4 resultados para Emission control
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
I moderni motori a combustione interna diventano sempre più complessi L'introduzione della normativa antinquinamento EURO VI richiederà una significativa riduzione degli inquinanti allo scarico. La maggiore criticità è rappresentata dalla riduzione degli NOx per i motori Diesel da aggiungersi a quelle già in vigore con le precedenti normative. Tipicamente la messa a punto di una nuova motorizzazione prevede una serie di test specifici al banco prova. Il numero sempre maggiore di parametri di controllo della combustione, sorti come conseguenza della maggior complessità meccanica del motore stesso, causa un aumento esponenziale delle prove da eseguire per caratterizzare l'intero sistema. L'obiettivo di questo progetto di dottorato è quello di realizzare un sistema di analisi della combustione in tempo reale in cui siano implementati diversi algoritmi non ancora presenti nelle centraline moderne. Tutto questo facendo particolare attenzione alla scelta dell'hardware su cui implementare gli algoritmi di analisi. Creando una piattaforma di Rapid Control Prototyping (RCP) che sfrutti la maggior parte dei sensori presenti in vettura di serie; che sia in grado di abbreviare i tempi e i costi della sperimentazione sui motopropulsori, riducendo la necessità di effettuare analisi a posteriori, su dati precedentemente acquisiti, a fronte di una maggior quantità di calcoli effettuati in tempo reale. La soluzione proposta garantisce l'aggiornabilità, la possibilità di mantenere al massimo livello tecnologico la piattaforma di calcolo, allontanandone l'obsolescenza e i costi di sostituzione. Questa proprietà si traduce nella necessità di mantenere la compatibilità tra hardware e software di generazioni differenti, rendendo possibile la sostituzione di quei componenti che limitano le prestazioni senza riprogettare il software.
Resumo:
Nowadays, the spreading of the air pollution crisis enhanced by greenhouse gases emission is leading to the worsening of global warming. Recently, several metropolitan cities introduced Zero-Emissions Zones where the use of the Internal Combustion Engine is forbidden to reduce localized pollutants emissions. This is particularly problematic for Plug-in Hybrid Electric Vehicles, which usually work in depleting mode. In order to address these issues, the present thesis presents a viable solution by exploiting vehicular connectivity to retrieve navigation data of the urban event along a selected route. The battery energy needed, in the form of a minimum State of Charge (SoC), is calculated by a Speed Profile Prediction algorithm and a Backward Vehicle Model. That value is then fed to both a Rule-Based Strategy, developed specifically for this application, and an Adaptive Equivalent Consumption Minimization Strategy (A-ECMS). The effectiveness of this approach has been tested with a Connected Hardware-in-the-Loop (C-HiL) on a driving cycle measured on-road, stimulating the predictions with multiple re-routings. However, even if hybrid electric vehicles have been recognized as a valid solution in response to increasingly tight regulations, the reduced engine load and the repeated engine starts and stops may reduce substantially the temperature of the exhaust after-treatment system (EATS), leading to relevant issues related to pollutant emission control. In this context, electrically heated catalysts (EHCs) represent a promising solution to ensure high pollutant conversion efficiency without affecting engine efficiency and performance. This work aims at studying the advantages provided by the introduction of a predictive EHC control function for a light-duty Diesel plug-in hybrid electric vehicle (PHEV) equipped with a Euro 7-oriented EATS. Based on the knowledge of future driving scenarios provided by vehicular connectivity, engine first start can be predicted and therefore an EATS pre-heating phase can be planned.
Resumo:
In recent years the hot water treatment (HW) represents an effective and safe approach for managing postharvest decay. This study reported the effect of an HW (60°C for 60 s and 45°C for 10 min) on brown rot and blue mould respectively. Peaches was found more thermotolerant compared to apple fruit, otherwise Penicillium expansum was more resistant to heat with respect to Monilinia spp. In semi-commercial and commercial trials, the inhibition of brown rot in naturally infected peaches was higher than 78% after 6 days at 0°C and 3 days at 20°C. Moreover, in laboratory trials a 100% disease incidence reduction was obtained by treating artificially infected peaches at 6-12 h after inoculation revealing a curative effect of HW. The expression levels of some genes were evaluated by qRT-PCR. Specifically, the cell wall genes (β-GAL, PL, PG, PME) showed a general decrease of expression level whereas PAL, CHI, HSP70 and ROS-scavenging genes were induced in treated peaches compared to the control ones. Contrarily, HW applied on artificially infected fruit before the inoculum was found to increase brown rot susceptibility. This aspect might be due to an increase of fruit VOCs emission as revealed by PTR-ToF-MS analysis. In addition a microarray experiment was conducted to analyze molecular mechanisms underneath the apple response to heat. Our results showed a largest amount of induced Heat shock proteins (HSPs), Heat shock cognate proteins (HSCs), Heat shock transcription factors (HSTFs) genes found at 1 and 4 hours from the treatment. Those genes required for the thermotolerance process could be involved in induced resistance response. The hypothesis was confirmed by 30% of blue mold disease reduction in artificially inoculated apple after 1 and 4 hours from the treatment. In order to improve peaches quality and disease management during storage, an innovative tool was also used: Da-meter.
Resumo:
The objective of the PhD thesis was to research technologies and strategies to reduce fuel consumption and pollutants emission produced by internal combustion engines. In order to meet this objective my activity was focused on the research of advanced controls based on cylinder pressure feedback. These types of control strategies were studied because they present promising results in terms of engine efficiency enhancement. In the PhD dissertation two study cases are presented. The first case is relative to a control strategy to be used at the test bench for the optimisation of the spark advance calibration of motorcycle Engine. The second case is relative to a control strategy to be used directly on board of mining engines with the objective or reducing the engine consumption and correct ageing effects. In both cases the strategies proved to be effective but their implementation required the use of specific toolchains for the measure of the cylinder pressure feedback that for a matter of cost makes feasible the strategy use only for applications: • At test bench • In small-markets like large off-road engines The major bottleneck that prevents the implementation of these strategies on mass production is the cost of cylinder pressure sensor. In order to tackle this issue, during the PhD research, the development of a low-cost sensor for the estimation of cylinder pressure was studied. The prototype was a piezo-electric washer designed to replace the standard spark-plug washer or high-pressure fuel injectors gasket. From the data analysis emerged the possibility to use the piezo-electric prototype signal to evaluate with accuracy several combustion metrics compatible for the implementation of advanced control strategies in on-board applications. Overall, the research shows that advanced combustion controls are feasible and beneficial, not only at the test bench or on stationary engines, but also in mass-produced engines.