3 resultados para Electrostatic factors contributing to the high oxidation potential of P680

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Primary Myelofibrosis (PMF) is the end-stage of Philadelphia-negative myeloproliferative neoplasms (MPN) and is characterized by fibrosis and hematopoietic failure in bone marrow, with a consequential migration of the malignant hematopoietic stem cells (HSC) in the spleen where they induce ineffective haematopoiesis. To date, available therapies for PMF are still palliative and do not halt the progression of this neoplasm. During my PhD years, our laboratory investigated the factors promoting the onset and progression of PMF. In our PMF mice model, Gata1low mouse, we studied the role of the interaction of HSC niche with megakaryocytes and HSC localization in the bone marrow during their division and cycle. We observed the inflammation and the main protagonists (LNC-2, CXCL1, and TGF-β) of this process and how their level changes before and after the onset of the disease. We investigated the different megakaryocyte populations in the fibrotic environment in different organs (lung and bone marrow) to define the megakaryocytes implicated in this process. In human samples, we described different ultrastructural abnormalities of megakaryocytes from the bone marrow and the spleen, identifying a possible different metabolism in those two populations. In conclusion, we highlighted the intricated crosstalk between the megakaryocytes, the niche and HSC in PMF. We identified megakaryocytes-dependent cytokines altering the homeostasis of the niche and HSC. Those cytokines could be used as alternative therapeutic targets. Furthermore, we observed different megakaryocytic populations in different organs, providing new prospective on the role of megakaryocytes in different microenvironments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research performed during the PhD candidature was intended to evaluate the quality of white wines, as a function of the reduction in SO2 use during the first steps of the winemaking process. In order to investigate the mechanism and intensity of interactions occurring between lysozyme and the principal macro-components of musts and wines, a series of experiments on model wine solutions were undertaken, focusing attention on the polyphenols, SO2, oenological tannins, pectines, ethanol, and sugar components. In the second part of this research program, a series of conventional sulphite added vinifications were compared to vinifications in which sulphur dioxide was replaced by lysozyme and consequently define potential winemaking protocols suitable for the production of SO2-free wines. To reach the final goal, the technological performance of two selected yeast strains with a low aptitude to produce SO2 during fermentation were also evaluated. The data obtained suggested that the addition of lysozyme and oenological tannins during the alcoholic fermentation could represent a promising alternative to the use of sulphur dioxide and a reliable starting point for the production of SO2-free wines. The different vinification protocols studied influenced the composition of the volatile profile in wines at the end of the alcoholic fermentation, especially with regards to alcohols and ethyl esters also a consequence of the yeast’s response to the presence or absence of sulphites during fermentation, contributing in different ways to the sensory profiles of wines. In fact, the aminoacids analysis showed that lysozyme can affect the consumption of nitrogen as a function of the yeast strain used in fermentation. During the bottle storage, the evolution of volatile compounds is affected by the presence of SO2 and oenological tannins, confirming their positive role in scaveging oxygen and maintaining the amounts of esters over certain levels, avoiding a decline in the wine’s quality. Even though a natural decrease was found on phenolic profiles due to oxidation effects caused by the presence of oxygen dissolved in the medium during the storage period, the presence of SO2 together with tannins contrasted the decay of phenolic content at the end of the fermentation. Tannins also showed a central role in preserving the polyphenolic profile of wines during the storage period, confirming their antioxidant property, acting as reductants. Our study focused on the fundamental chemistry relevant to the oxidative phenolic spoilage of white wines has demonstrated the suitability of glutathione to inhibit the production of yellow xanthylium cation pigments generated from flavanols and glyoxylic acid at the concentration that it typically exists in wine. The ability of glutathione to bind glyoxylic acid rather than acetaldehyde may enable glutathione to be used as a ‘switch’ for glyoxylic acid-induced polymerisation mechanisms, as opposed to the equivalent acetaldehyde polymerisation, in processes such as microoxidation. Further research is required to assess the ability of glutathione to prevent xanthylium cation production during the in-situ production of glyoxylic acid and in the presence of sulphur dioxide.