2 resultados para Electronics and Computer Science, School of (No longer in use)

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiomyopathies are a heterogeneous group of myocardial disorders defined by structural and functional alterations of the heart. These cardiac diseases can have both non-genetic and genetic origin. Nevertheless, a different etiology can trigger the same phenotype, as in the case of anthracycline-induced cardiotoxicity and desmin-related cardiomyopathy (DRM). Therefore, the aim of this study was to investigate the cellular mechanisms driving the development of these cardiotoxic conditions in in vitro models. Doxorubicin (DOX) is a commonly used antineoplastic drug for the treatment of a wide range of tumors. Besides, its clinical use is restricted because of dose-dependent cardiotoxicity. Our findings provided evidence that phospholipase C Beta 2 (PLCβ2) may have a critical role in DOX-induced cardiotoxicity in undifferentiated and differentiated H9c2 cell line. Interestingly, the results obtained revealed that cardiomyocytes are less sensitive to DOX, following the evaluation of cellular mechanisms such as: oxidative stress, apoptosis and cell proliferation. Nonetheless, the treatment induced a significant upregulation of PLCβ2 associated to morphological changes in both models, demonstrating the implication in a hypertrophic response. On the other hand, a hereditary DRM was associated to a missense mutation of aB crystallin (CRYAB), a chaperone protein involved in the regulation of the intermediate filament network. Since research has only been conducted on transgenic (TG) mice and neonatal rat cardiomyocytes, this study aimed at investigating cellular mechanisms triggered by CRYABR120G mutation in a hiPSC-derived DRM model. Our model confirmed the impairment of the cytoskeletal organization resulting in the formation of desmin and CRYAB aggregates and myofibril misalignment. Moreover, the missense mutation confirmed a hypertrophic cardiomyopathy phenotype, a feature of DRM patients, on cardiac engineered tissues. Lastly, these data obtained suggest that further research on PLCβ2 and CRYAB are needed to comprehend the molecular mechanisms behind the development of these 2 cardiac diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this thesis was to study the response mechanisms of grapevine to Fe-deficiency and to potential Fe chlorosis prevention strategies. The results show that the presence of bicarbonate in the nutrient solution shifted the activity of PEPC and TCA cycle enzymes and the accumulation/translocation of organic acids in roots of Fe-deprived plants. The rootstock 140 Ruggeri displayed a typical behavior of calcicole plants under bicarbonate stress. The Fe chlorosis susceptible rootstock 101-14 reacted to a prolonged Fe-deficiency reducing the root activity of PEPC and MDH. Noteworthy, it accumulates high levels of citric acid in roots, indicating a low capacity to utilizing, transporting and/or exudating organic acids into the rhizosfere. In contrast, 110 Richter rootstock is capable to maintain an active metabolism of organic acids in roots, accumulating them to a lesser extent than 101-14. Similarly to 101-14, SO4 genotype displays a strong decrease of mechanisms associated to Fe chlorosis tolerance (PEPC and MDH enzymes). Nevertheless it is able to avoid excessive accumulation of citric acid in roots, similar as 110 Richter rootstock. Intercropping with Festuca rubra increased leaf chlorophyll content and net photosynthesis. In addition, intercropping reduces the activity of PEPC in roots, similary to Fe-chelate supply. Applications of NH4+ with nitrification inhibitor prevents efficiently Fe-deficiency, increases chlorophyll content, and induces similar root biochemical responses as Fe-EDDHA. Without the addition of nitrification inhibitors, the effectiveness of NH4+ supply on Fe chlorosis prevention resulted significantly lower. The aspects intertwined in this investigation highlight the complexity of Fe physiology and the fine metabolic tuning of grapevine genotypes to Fe availability and soil-related environmental factors. The experimental evidences reveal the need to carry out future researches on Fe nutrition maintaining a continous flow of knowledge between theoretical and agronomical perspectives for fully supporting the efforts devoted to convert science into practice.