2 resultados para Electronic product

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organic semiconductors have great promise in the field of electronics due to their low cost in term of fabrication on large areas and their versatility to new devices, for these reasons they are becoming a great chance in the actual technologic scenery. Some of the most important open issues related to these materials are the effects of surfaces and interfaces between semiconductor and metals, the changes caused by different deposition methods and temperature, the difficulty related to the charge transport modeling and finally a fast aging with time, bias, air and light, that can change the properties very easily. In order to find out some important features of organic semiconductors I fabricated Organic Field Effect Transistors (OFETs), using them as characterization tools. The focus of my research is to investigate the effects of ion implantation on organic semiconductors and on OFETs. Ion implantation is a technique widely used on inorganic semiconductors to modify their electrical properties through the controlled introduction of foreign atomic species in the semiconductor matrix. I pointed my attention on three major novel and interesting effects, that I observed for the first time following ion implantation of OFETs: 1) modification of the electrical conductivity; 2) introduction of stable charged species, electrically active with organic thin films; 3) stabilization of transport parameters (mobility and threshold voltage). I examined 3 different semiconductors: Pentacene, a small molecule constituted by 5 aromatic rings, Pentacene-TIPS, a more complex by-product of the first one, and finally an organic material called Pedot PSS, that belongs to the branch of the conductive polymers. My research started with the analysis of ion implantation of Pentacene films and Pentacene OFETs. Then, I studied totally inkjet printed OFETs made of Pentacene-TIPS or PEDOT-PSS, and the research will continue with the ion implantation on these promising organic devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tobacco epidemic is a public health burden. Nicotine-Delivery-Systems(NDS) are devices designed to help people replace conventional cigarette(CC) and among these devices we find electronic cigarettes(e-cig), which are classified as Electronic-NDS(ENDS). E-cigs use different technologies to vaporize a liquid or to heat the tobacco avoiding the combustion phenomenon(IQOS). The US Food and Drug Administration(FDA) has labelled IQOS as modified risk tobacco products(MRTPs), indirectly encouraging the perception of safety in the consumers, but IQOS smoke, although to a lesser extent than conventional, still presents a great deal of harmful or potentially harmful compounds. My PhD thesis aims to study the toxic effects related to IQOS exposure. I sought to answer the question of whether the toxic compounds released by IQOS, albeit in reduced concentrations, could lead to genotoxicity and damage to the airways and liver in vivo. At the University of Nottingham, I have investigated in vitro the effects generated by the IQOS, e-cigs and CC exposure on PBMCs and human lung epithelial cell line. Finally, at University of Milano–Bicocca, I have developed a in vivo Positron Emission computed Tomography(PET) imaging procedure meant to be applied to the monitoring of ENDS toxicity, particularly in the brain. These results indicate that IQOS is not a low-risk product in vivo, for primary target organs but also for secondary organs, although we have observed a small impact in vitro. Labelling as MRTP may mislead consumers who interpret “a lower level of toxic compounds” as an indication of “harmlessness” when there is a health risk for users. In the last part, I set up a methodology for studying temporal fluctuations of regional brain metabolism and connectivity derived from mice of different ages allowing researchers to obtain normative values in investigations of the efficacy or toxicity of substances at the functional level of the CNS.