12 resultados para Electric Generators
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The present thesis is focused on wave energy, which is a particular kind of ocean energy, and is based on the activity carried out during the EU project SEA TITAN. The main scope of this work is the design of a power electronic section for an innovative wave energy extraction system based on a switched-reluctance machine. In the first chapter, the general features of marine wave energy harvesting are treated. The concept of Wave Energy Converter (WEC) is introduced as well as the mathematical description of the waves, their characterization and measurement, the WEC classification, the operating principles and the standardization framework. Also, detailed considerations on the environmental impact are presented. The SEA TITAN project is briefly described. The second chapter is dedicated to the technical issues of the SEA TITAN project, such as the operating principle, the performance optimization carried out in the project, the main innovations as well as interesting demonstrations on the behavior of the generator and its control. In the third chapter, the power electronics converters of SEA TITAN are described, and the design choices, procedures and calculations are shown, with a further insight into the application given by analyzing the MATLAB Simulink model of the system and its control scheme. Experimental tests are reported in the fourth chapter, with graphs and illustrations of the power electronic apparatus interfaced with the real machine. Finally, the conclusion in the fifth chapter offers a global overview of the project and opens further development pathways.
Resumo:
In the framework of the micro-CHP (Combined Heat and Power) energy systems and the Distributed Generation (GD) concept, an Integrated Energy System (IES) able to meet the energy and thermal requirements of specific users, using different types of fuel to feed several micro-CHP energy sources, with the integration of electric generators of renewable energy sources (RES), electrical and thermal storage systems and the control system was conceived and built. A 5 kWel Polymer Electrolyte Membrane Fuel Cell (PEMFC) has been studied. Using experimental data obtained from various measurement campaign, the electrical and CHP PEMFC system performance have been determinate. The analysis of the effect of the water management of the anodic exhaust at variable FC loads has been carried out, and the purge process programming logic was optimized, leading also to the determination of the optimal flooding times by varying the AC FC power delivered by the cell. Furthermore, the degradation mechanisms of the PEMFC system, in particular due to the flooding of the anodic side, have been assessed using an algorithm that considers the FC like a black box, and it is able to determine the amount of not-reacted H2 and, therefore, the causes which produce that. Using experimental data that cover a two-year time span, the ageing suffered by the FC system has been tested and analyzed.
Resumo:
The research activity carried out during the PhD course in Electrical Engineering belongs to the branch of electric and electronic measurements. The main subject of the present thesis is a distributed measurement system to be installed in Medium Voltage power networks, as well as the method developed to analyze data acquired by the measurement system itself and to monitor power quality. In chapter 2 the increasing interest towards power quality in electrical systems is illustrated, by reporting the international research activity inherent to the problem and the relevant standards and guidelines emitted. The aspect of the quality of voltage provided by utilities and influenced by customers in the various points of a network came out only in recent years, in particular as a consequence of the energy market liberalization. Usually, the concept of quality of the delivered energy has been associated mostly to its continuity. Hence the reliability was the main characteristic to be ensured for power systems. Nowadays, the number and duration of interruptions are the “quality indicators” commonly perceived by most customers; for this reason, a short section is dedicated also to network reliability and its regulation. In this contest it should be noted that although the measurement system developed during the research activity belongs to the field of power quality evaluation systems, the information registered in real time by its remote stations can be used to improve the system reliability too. Given the vast scenario of power quality degrading phenomena that usually can occur in distribution networks, the study has been focused on electromagnetic transients affecting line voltages. The outcome of such a study has been the design and realization of a distributed measurement system which continuously monitor the phase signals in different points of a network, detect the occurrence of transients superposed to the fundamental steady state component and register the time of occurrence of such events. The data set is finally used to locate the source of the transient disturbance propagating along the network lines. Most of the oscillatory transients affecting line voltages are due to faults occurring in any point of the distribution system and have to be seen before protection equipment intervention. An important conclusion is that the method can improve the monitored network reliability, since the knowledge of the location of a fault allows the energy manager to reduce as much as possible both the area of the network to be disconnected for protection purposes and the time spent by technical staff to recover the abnormal condition and/or the damage. The part of the thesis presenting the results of such a study and activity is structured as follows: chapter 3 deals with the propagation of electromagnetic transients in power systems by defining characteristics and causes of the phenomena and briefly reporting the theory and approaches used to study transients propagation. Then the state of the art concerning methods to detect and locate faults in distribution networks is presented. Finally the attention is paid on the particular technique adopted for the same purpose during the thesis, and the methods developed on the basis of such approach. Chapter 4 reports the configuration of the distribution networks on which the fault location method has been applied by means of simulations as well as the results obtained case by case. In this way the performance featured by the location procedure firstly in ideal then in realistic operating conditions are tested. In chapter 5 the measurement system designed to implement the transients detection and fault location method is presented. The hardware belonging to the measurement chain of every acquisition channel in remote stations is described. Then, the global measurement system is characterized by considering the non ideal aspects of each device that can concur to the final combined uncertainty on the estimated position of the fault in the network under test. Finally, such parameter is computed according to the Guide to the Expression of Uncertainty in Measurements, by means of a numeric procedure. In the last chapter a device is described that has been designed and realized during the PhD activity aiming at substituting the commercial capacitive voltage divider belonging to the conditioning block of the measurement chain. Such a study has been carried out aiming at providing an alternative to the used transducer that could feature equivalent performance and lower cost. In this way, the economical impact of the investment associated to the whole measurement system would be significantly reduced, making the method application much more feasible.
Resumo:
The ever-increasing spread of automation in industry puts the electrical engineer in a central role as a promoter of technological development in a sector such as the use of electricity, which is the basis of all the machinery and productive processes. Moreover the spread of drives for motor control and static converters with structures ever more complex, places the electrical engineer to face new challenges whose solution has as critical elements in the implementation of digital control techniques with the requirements of inexpensiveness and efficiency of the final product. The successfully application of solutions using non-conventional static converters awake an increasing interest in science and industry due to the promising opportunities. However, in the same time, new problems emerge whose solution is still under study and debate in the scientific community During the Ph.D. course several themes have been developed that, while obtaining the recent and growing interest of scientific community, have much space for the development of research activity and for industrial applications. The first area of research is related to the control of three phase induction motors with high dynamic performance and the sensorless control in the high speed range. The management of the operation of induction machine without position or speed sensors awakes interest in the industrial world due to the increased reliability and robustness of this solution combined with a lower cost of production and purchase of this technology compared to the others available in the market. During this dissertation control techniques will be proposed which are able to exploit the total dc link voltage and at the same time capable to exploit the maximum torque capability in whole speed range with good dynamic performance. The proposed solution preserves the simplicity of tuning of the regulators. Furthermore, in order to validate the effectiveness of presented solution, it is assessed in terms of performance and complexity and compared to two other algorithm presented in literature. The feasibility of the proposed algorithm is also tested on induction motor drive fed by a matrix converter. Another important research area is connected to the development of technology for vehicular applications. In this field the dynamic performances and the low power consumption is one of most important goals for an effective algorithm. Towards this direction, a control scheme for induction motor that integrates within a coherent solution some of the features that are commonly required to an electric vehicle drive is presented. The main features of the proposed control scheme are the capability to exploit the maximum torque in the whole speed range, a weak dependence on the motor parameters, a good robustness against the variations of the dc-link voltage and, whenever possible, the maximum efficiency. The second part of this dissertation is dedicated to the multi-phase systems. This technology, in fact, is characterized by a number of issues worthy of investigation that make it competitive with other technologies already on the market. Multiphase systems, allow to redistribute power at a higher number of phases, thus making possible the construction of electronic converters which otherwise would be very difficult to achieve due to the limits of present power electronics. Multiphase drives have an intrinsic reliability given by the possibility that a fault of a phase, caused by the possible failure of a component of the converter, can be solved without inefficiency of the machine or application of a pulsating torque. The control of the magnetic field spatial harmonics in the air-gap with order higher than one allows to reduce torque noise and to obtain high torque density motor and multi-motor applications. In one of the next chapters a control scheme able to increase the motor torque by adding a third harmonic component to the air-gap magnetic field will be presented. Above the base speed the control system reduces the motor flux in such a way to ensure the maximum torque capability. The presented analysis considers the drive constrains and shows how these limits modify the motor performance. The multi-motor applications are described by a well-defined number of multiphase machines, having series connected stator windings, with an opportune permutation of the phases these machines can be independently controlled with a single multi-phase inverter. In this dissertation this solution will be presented and an electric drive consisting of two five-phase PM tubular actuators fed by a single five-phase inverter will be presented. Finally the modulation strategies for a multi-phase inverter will be illustrated. The problem of the space vector modulation of multiphase inverters with an odd number of phases is solved in different way. An algorithmic approach and a look-up table solution will be proposed. The inverter output voltage capability will be investigated, showing that the proposed modulation strategy is able to fully exploit the dc input voltage either in sinusoidal or non-sinusoidal operating conditions. All this aspects are considered in the next chapters. In particular, Chapter 1 summarizes the mathematical model of induction motor. The Chapter 2 is a brief state of art on three-phase inverter. Chapter 3 proposes a stator flux vector control for a three- phase induction machine and compares this solution with two other algorithms presented in literature. Furthermore, in the same chapter, a complete electric drive based on matrix converter is presented. In Chapter 4 a control strategy suitable for electric vehicles is illustrated. Chapter 5 describes the mathematical model of multi-phase induction machines whereas chapter 6 analyzes the multi-phase inverter and its modulation strategies. Chapter 7 discusses the minimization of the power losses in IGBT multi-phase inverters with carrier-based pulse width modulation. In Chapter 8 an extended stator flux vector control for a seven-phase induction motor is presented. Chapter 9 concerns the high torque density applications and in Chapter 10 different fault tolerant control strategies are analyzed. Finally, the last chapter presents a positioning multi-motor drive consisting of two PM tubular five-phase actuators fed by a single five-phase inverter.
Resumo:
The term "Brain Imaging" identi�es a set of techniques to analyze the structure and/or functional behavior of the brain in normal and/or pathological situations. These techniques are largely used in the study of brain activity. In addition to clinical usage, analysis of brain activity is gaining popularity in others recent �fields, i.e. Brain Computer Interfaces (BCI) and the study of cognitive processes. In this context, usage of classical solutions (e.g. f MRI, PET-CT) could be unfeasible, due to their low temporal resolution, high cost and limited portability. For these reasons alternative low cost techniques are object of research, typically based on simple recording hardware and on intensive data elaboration process. Typical examples are ElectroEncephaloGraphy (EEG) and Electrical Impedance Tomography (EIT), where electric potential at the patient's scalp is recorded by high impedance electrodes. In EEG potentials are directly generated from neuronal activity, while in EIT by the injection of small currents at the scalp. To retrieve meaningful insights on brain activity from measurements, EIT and EEG relies on detailed knowledge of the underlying electrical properties of the body. This is obtained from numerical models of the electric �field distribution therein. The inhomogeneous and anisotropic electric properties of human tissues make accurate modeling and simulation very challenging, leading to a tradeo�ff between physical accuracy and technical feasibility, which currently severely limits the capabilities of these techniques. Moreover elaboration of data recorded requires usage of regularization techniques computationally intensive, which influences the application with heavy temporal constraints (such as BCI). This work focuses on the parallel implementation of a work-flow for EEG and EIT data processing. The resulting software is accelerated using multi-core GPUs, in order to provide solution in reasonable times and address requirements of real-time BCI systems, without over-simplifying the complexity and accuracy of the head models.
Resumo:
The international growing concern for the human exposure to magnetic fields generated by electric power lines has unavoidably led to imposing legal limits. Respecting these limits, implies being able to calculate easily and accurately the generated magnetic field also in complex configurations. Twisting of phase conductors is such a case. The consolidated exact and approximated theory regarding a single-circuit twisted three-phase power cable line has been reported along with the proposal of an innovative simplified formula obtained by means of an heuristic procedure. This formula, although being dramatically simpler, is proven to be a good approximation of the analytical formula and at the same time much more accurate than the approximated formula found in literature. The double-circuit twisted three-phase power cable line case has been studied following different approaches of increasing complexity and accuracy. In this framework, the effectiveness of the above-mentioned innovative formula is also examined. The experimental verification of the correctness of the twisted double-circuit theoretical analysis has permitted its extension to multiple-circuit twisted three-phase power cable lines. In addition, appropriate 2D and, in particularly, 3D numerical codes for simulating real existing overhead power lines for the calculation of the magnetic field in their vicinity have been created. Finally, an innovative ‘smart’ measurement and evaluation system of the magnetic field is being proposed, described and validated, which deals with the experimentally-based evaluation of the total magnetic field B generated by multiple sources in complex three-dimensional arrangements, carried out on the basis of the measurement of the three Cartesian field components and their correlation with the field currents via multilinear regression techniques. The ultimate goal is verifying that magnetic induction intensity is within the prescribed limits.
Resumo:
The quench characteristics of second generation (2 G) YBCO Coated Conductor (CC) tapes are of fundamental importance for the design and safe operation of superconducting cables and magnets based on this material. Their ability to transport high current densities at high temperature, up to 77 K, and at very high fields, over 20 T, together with the increasing knowledge in their manufacturing, which is reducing their cost, are pushing the use of this innovative material in numerous system applications, from high field magnets for research to motors and generators as well as for cables. The aim of this Ph. D. thesis is the experimental analysis and numerical simulations of quench in superconducting HTS tapes and coils. A measurements facility for the characterization of superconducting tapes and coils was designed, assembled and tested. The facility consist of a cryostat, a cryocooler, a vacuum system, resistive and superconducting current leads and signal feedthrough. Moreover, the data acquisition system and the software for critical current and quench measurements were developed. A 2D model was developed using the finite element code COMSOL Multiphysics R . The problem of modeling the high aspect ratio of the tape is tackled by multiplying the tape thickness by a constant factor, compensating the heat and electrical balance equations by introducing a material anisotropy. The model was then validated both with the results of a 1D quench model based on a non-linear electric circuit coupled to a thermal model of the tape, to literature measurements and to critical current and quench measurements made in the cryogenic facility. Finally the model was extended to the study of coils and windings with the definition of the tape and stack homogenized properties. The procedure allows the definition of a multi-scale hierarchical model, able to simulate the windings with different degrees of detail.
Resumo:
The present dissertation aims to explore, theoretically and experimentally, the problems and the potential advantages of different types of power converters for “Smart Grid” applications, with particular emphasis on multi-level architectures, which are attracting a rising interest even for industrial requests. The models of the main multilevel architectures (Diode-Clamped and Cascaded) are shown. The best suited modulation strategies to function as a network interface are identified. In particular, the close correlation between PWM (Pulse Width Modulation) approach and SVM (Space Vector Modulation) approach is highlighted. An innovative multilevel topology called MMC (Modular Multilevel Converter) is investigated, and the single-phase, three-phase and "back to back" configurations are analyzed. Specific control techniques that can manage, in an appropriate way, the charge level of the numerous capacitors and handle the power flow in a flexible way are defined and experimentally validated. Another converter that is attracting interest in “Power Conditioning Systems” field is the “Matrix Converter”. Even in this architecture, the output voltage is multilevel. It offers an high quality input current, a bidirectional power flow and has the possibility to control the input power factor (i.e. possibility to participate to active and reactive power regulations). The implemented control system, that allows fast data acquisition for diagnostic purposes, is described and experimentally verified.
Resumo:
The first part of this thesis has focused on the construction of a twelve-phase asynchronous machine for More Electric Aircraft (MEA) applications. In fact, the aerospace world has found in electrification the way to improve the efficiency, reliability and maintainability of an aircraft. This idea leads to the aircraft a new management and distribution of electrical services. In this way is possible to remove or to reduce the hydraulic, mechanical and pneumatic systems inside the aircraft. The second part of this dissertation is dedicated on the enhancement of the control range of matrix converters (MCs) operating with non-unity input power factor and, at the same time, on the reduction of the switching power losses. The analysis leads to the determination in closed form of a modulation strategy that features a control range, in terms of output voltage and input power factor, that is greater than that of the traditional strategies under the same operating conditions, and a reduction in the switching power losses.
Resumo:
In food industry, quality assurance requires low cost methods for the rapid assessment of the parameters that affect product stability. Foodstuffs are complex in their structure, mainly composed by gaseous, liquid and solid phases which often coexist in the same product. Special attention is given to water, concerned as natural component of the major food product or as added ingredient of a production process. Particularly water is structurally present in the matrix and not completely available. In this way, water can be present in foodstuff in many different states: as water of crystallization, bound to protein or starch molecules, entrapped in biopolymer networks or adsorbed on solid surfaces of porous food particles. The traditional technique for the assessment of food quality give reliable information but are destructive, time consuming and unsuitable for on line application. The techniques proposed answer to the limited disposition of time and could be able to characterize the main compositional parameters. Dielectric interaction response is mainly related to water and could be useful not only to provide information on the total content but also on the degree of mobility of this ubiquitous molecule in different complex food matrix. In this way the proposal of this thesis is to answer at this need. Dielectric and electric tool can be used for the scope and led us to describe the complex food matrix and predict food characteristic. The thesis is structured in three main part, in the first one some theoretical tools are recalled to well assess the food parameter involved in the quality definition and the techniques able to reply at the problem emerged. The second part explains the research conducted and the experimental plans are illustrated in detail. Finally the last section is left for rapid method easily implementable in an industrial process.