3 resultados para Effective Antiproliferative Agents
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Design, synthesis and biological evaluation of substituted naphthalene diimides as anticancer agents
Resumo:
It has been proved that naphthalene diimide (NDI) derivatives display anticancer properties as intercalators and G-quadruplex-binding ligands, leading to DNA damage, senescence and down-regulation of oncogene expression. This thesis deals with the design and synthesis of disubstituted and tetrasubstituted NDI derivatives endowed with anticancer activity, interacting with DNA together with other targets implicated in cancer development. Disubstituted NDI compounds have been designed with the aim to provide potential multitarget directed ligands (MTDLs), in order to create molecules able to simultaneously interact with some of the different targets involved in this pathology. The most active compound, displayed antiproliferative activity in submicromolar range, especially against colon and prostate cancer cell lines, the ability to bind duplex and quadruplex DNA, to inhibit Taq polymerase and telomerase, to trigger caspase activation by a possible oxidative mechanism, to downregulate ERK 2 protein and to inhibit ERKs phosphorylation, without acting directly on microtubules and tubuline. Tetrasubstituted NDI compounds have been designed as G-quadruplex-binding ligands endowed with anticancer activity. In order to improve the cellular uptake of the lead compound, the N-methylpiperazine moiety have been replaced with different aromatic systems and methoxypropyl groups. The most interesting compound was 1d, which was able to interact with the G-quadruplexes both telomeric and in HSP90 promoter region, and it has been co-crystallized with the human telomeric G-quadruplex, to directly verify its ability to bind this kind of structure, and also to investigate its binding mode. All the morpholino substituted compounds show antiproliferative activity in submicromolar values mainly in pancreatic and lung cancer cell lines, and they show an improved biological profile in comparison with that of the lead compound. In conclusion, both these studies, may represent a promising starting point for the development of new interesting molecules useful for the treatment of cancer, underlining the versatility of the NDI scaffold.
Resumo:
Cancer is a multifactorial disease characterized by a very complex etiology. Basing on its complex nature, a promising therapeutic strategy could be based by the “Multi-Target-Directed Ligand” (MTDL) approach, based on the assumption that a single molecule could hit several targets responsible for the pathology. Several agents acting on DNA are clinically used, but the severe deriving side effects limit their therapeutic application. G-quadruplex structures are DNA secondary structures located in key zones of human genome; targeting quadruplex structures could allow obtaining an anticancer therapy more free from side effects. In the last years it has been proved that epigenetic modulation can control the expression of human genes, playing a crucial role in carcinogenesis and, in particular, an abnormal expression of histone deacetylase enzymes are related to tumor onset and progression. This thesis deals with the design and synthesis of new naphthalene diimide (NDI) derivatives endowed with anticancer activity, interacting with DNA together with other targets implicated in cancer development, such as HDACs. NDI-polyamine and NDI-polyamine-hydroxamic acid conjugates have been designed with the aim to provide potential MTDLs, in order to create molecules able simultaneously to interact with different targets involved in this pathology, specifically the G-quadruplex structures and HDAC, and to exploit the polyamine transport system to get selectively into cancer cells. Macrocyclic NDIs have been designed with the aim to improve the quadruplex targeting profile of the disubstituted NDIs. These compounds proved the ability to induce a high and selective stabilization of the quadruplex structures, together with cytotoxic activities in the micromolar range. Finally, trisubstituted NDIs have been developed as G-quadruplex-binders, potentially effective against pancreatic adenocarcinoma. In conclusion, all these studies may represent a promising starting point for the development of new interesting molecules useful for the treatment of cancer, underlining the versatility of the NDI scaffold.
Resumo:
Pathogenic fungi are responsible for vine diseases affecting the grapevine yield and the organoleptic quality of the final wine products. Using of biocontrol agents can represent a sustainable alternative to the use of synthetic fungicides whose intense use can have negative effects on the ecosystem and cause increase resistant pathogen population to synthetic agents. The principal aim of my PhD thesis was the isolation and characterization of new yeast strains and Bacillus subtilis SV108 as biocontrol agent and the comprehension of the mechanism of their antimicrobial action. Accordingly, twenty wild yeast and one selected bacterium isolated among 62 samples, isolated from different Italian and Malaysian regions and molecularly identified, were evaluated in a preliminary screening test on agar. Results showed the highest effects on inhibiting mycelial growth by Starmerella bacillaris FE08.05, Metschnikowia pulcherrima GP8 and Hanseniaspora uvarum GM19. On the other side, Bacillus subtilis SV108 showed the ability of inhibit the mycelial growth of selected fungi by producing antimicrobial compounds on Malt Extract Broth medium recovered by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and identified by electrospray ionization (ESI) tandem mass spectrometer Triple TOF 5600. Moreover, in order to analyze the volatile fraction of compounds, the quantitative analysis of the VOCs profiles was performed by GC/MS/SPME. The analysis highlighted the presence of isoamyl and phenylethyl alcohols and an overall higher presence of low-chain fatty acids and volatile ethyl esters. All the data collected suggest that the tested yeasts, found among the epiphytic microbiota associated with grape berries, can be potentially effective for the biological control of pathogenic moulds. On the other hand, the proteomic study conducted on B. subtilis SV108 revealed that there are two cyclic antifungal peptides which can explain the antimicrobial effect of Bacillus subtilis SV108 acting as biocontrol agent against fungal pathogens in grapevine.