3 resultados para Ecotourism -- Catalonia -- Gavarres Mountains
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This thesis focuses on the impact of climate change in alpine ecosystems stressing the response of high elevation terricolous lichen communities. In fact, despite the strong sensitivity of cryptogams to changes in climatic factors, information is still scanty.We collected records in 154 plots placed in the summit area of the Majella Massif. In Following a multitaxon approach, Chapter 1 includes cryptogams and vascular plants. We analysed patterns in species richness, beta diversity and functional composition. In Chapter 2, we analysed the relationships between climatic variables and phylogenetic diversity and structure indices. Chapter 3 provides a long-term response relative to the consequences of climate change on a representative terricolous lichen genus across the Alps. Chapter 4 explores the relationships between the species richness and the functional composition of lichen growing on two types of substrates (carbonatic and siliceous soils) along different elevation gradients in the Eastern Alps. Climate change could affect cryptogams and lichens much more than vascular plants in Mediterranean mountains. Contrasting species-climate and traits-climate relationships were found between lichens and bryophytes, suggesting that each group may be sensitive to different components of climate change. Ongoing climate change may also lead to a loss of genetic diversity at high elevation ranges in the Mediterranean mountains, pauperising the life history richness of lichens. Alpine results forecasted that moderate range loss dynamics will occur at low elevation and in peripheral areas of the alpine chain. Results also support the view that range dynamics could be associated with functional traits mainly related to water-use strategies, dispersal, and establishment ability. We also highlighted the importance of substrates as a main driver of both species’ richness and functional traits composition. A “trade-off” also occurs between stress tolerance and the competitive response of communities of terricolous lichens that grow above siliceous and carbonatic soils.
Resumo:
Understanding the natural and forced variability of the atmospheric general circulation and its drivers is one of the grand challenges in climate science. It is of paramount importance to understand to what extent the systematic error of climate models affects the processes driving such variability. This is done by performing a set of simulations (ROCK experiments) with an intermediate complexity atmospheric model (SPEEDY), in which the Rocky Mountains orography is increased or decreased to influence the structure of the North Pacific jet stream. For each of these modified-orography experiments, the climatic response to idealized sea surface temperature anomalies of varying intensity in the El Niño Southern Oscillation (ENSO) region is studied. ROCK experiments are characterized by variations in the Pacific jet stream intensity whose extension encompasses the spread of the systematic error found in Coupled Model Intercomparison Project (CMIP6) models. When forced with ENSO-like idealised anomalies, they exhibit a non-negligible sensitivity in the response pattern over the Pacific North American region, indicating that the model mean state can affect the model response to ENSO. It is found that the classical Rossby wave train response to ENSO is more meridionally oriented when the Pacific jet stream is weaker and more zonally oriented with a stronger jet. Rossby wave linear theory suggests that a stronger jet implies a stronger waveguide, which traps Rossby waves at a lower latitude, favouring a zonal propagation of Rossby waves. The shape of the dynamical response to ENSO affects the ENSO impacts on surface temperature and precipitation over Central and North America. A comparison of the SPEEDY results with CMIP6 models suggests a wider applicability of the results to more resources-demanding climate general circulation models (GCMs), opening up to future works focusing on the relationship between Pacific jet misrepresentation and response to external forcing in fully-fledged GCMs.
Resumo:
This thesis investigates mechanisms and boundary conditions that steer the early localisation of deformation and strain in carbonate multilayers involved in thrust systems, under shallow and mid-crustal conditions. Much is already understood about deformation localisation, but some key points remain loosely constrained. They encompass i) the understanding of which structural domains can preserve evidence of early stages of tectonic shortening, ii) the recognition of which mechanisms assist deformation during these stages and iii) the identification of parameters that actually steer the beginning of localisation. To clarify these points, the thesis presents the results of an integrated, multiscale and multi-technique structural study that relied on field and laboratory data to analyse the structural, architectural, mineralogical and geochemical features that govern deformation during compressional tectonics. By focusing on two case studies, the Eastern Southern Alps (northern Italy), where deformation is mainly brittle, and the Oman Mountains (northeastern Oman), where ductile deformation dominates, the thesis shows that the deformation localisation is steered by several mechanisms that mutually interact at different stages during compression. At shallow crustal conditions, derived conceptual and numerical models show that both inherited (e.g., stratigraphic) and acquired (e.g., structural) features play a key role in steering deformation and differentiating the seismic behaviour of the multilayer succession. At the same time, at deeper crustal conditions, strain localises in narrow domains in which fluids, temperature, shear strain and pressure act together during the development of the internal fabric and the chemical composition of mylonitic shear zones, in which localisation took place under high-pressure (HP) and low-temperature (LT) conditions. In particular, results indicate that those shear zones acted as “sheltering structural capsules” in which peculiar processes can happen and where the results of these processes can be successively preserved even over hundreds of millions of years.