15 resultados para Econometric methods of discrete choice
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The surface electrocardiogram (ECG) is an established diagnostic tool for the detection of abnormalities in the electrical activity of the heart. The interest of the ECG, however, extends beyond the diagnostic purpose. In recent years, studies in cognitive psychophysiology have related heart rate variability (HRV) to memory performance and mental workload. The aim of this thesis was to analyze the variability of surface ECG derived rhythms, at two different time scales: the discrete-event time scale, typical of beat-related features (Objective I), and the “continuous” time scale of separated sources in the ECG (Objective II), in selected scenarios relevant to psychophysiological and clinical research, respectively. Objective I) Joint time-frequency and non-linear analysis of HRV was carried out, with the goal of assessing psychophysiological workload (PPW) in response to working memory engaging tasks. Results from fourteen healthy young subjects suggest the potential use of the proposed indices in discriminating PPW levels in response to varying memory-search task difficulty. Objective II) A novel source-cancellation method based on morphology clustering was proposed for the estimation of the atrial wavefront in atrial fibrillation (AF) from body surface potential maps. Strong direct correlation between spectral concentration (SC) of atrial wavefront and temporal variability of the spectral distribution was shown in persistent AF patients, suggesting that with higher SC, shorter observation time is required to collect spectral distribution, from which the fibrillatory rate is estimated. This could be time and cost effective in clinical decision-making. The results held for reduced leads sets, suggesting that a simplified setup could also be considered, further reducing the costs. In designing the methods of this thesis, an online signal processing approach was kept, with the goal of contributing to real-world applicability. An algorithm for automatic assessment of ambulatory ECG quality, and an automatic ECG delineation algorithm were designed and validated.
Resumo:
The present work provides an ex-post assessment of the UK 5-a-day information campaign where the positive effects of information on consumption levels are disentangled from the potentially conflicting price dynamics. A model-based estimate of the counterfactual (no-intervention) scenario is computed using data from the Expenditure and Food Survey between 2002 and 2006. For this purpose fruit and vegetable demand is modelled employing Quadratic Almost Ideal Demand System (QUAIDS) specification with demographic effects and controlling for potential endogeneity of prices and total food expenditure.
Resumo:
Researches performed during the PhD course intended to assess innovative applications of near-infrared spectroscopy in reflectance (NIR) in the production chain of beer. The purpose is to measure by NIR the "malting quality" (MQ) parameter of barley, to monitor the malting process and to know if a certain type of barley is suitable for the production of beer and spirits. Moreover, NIR will be applied to monitor the brewing process. First of all, it was possible to check the quality of the raw materials like barley, maize and barley malt using a rapid, non-destructive and reliable method, with a low error of prediction. The more interesting result obtained at this level was that the repeatability of the NIR calibration models developed was comparable with the one of the reference method. Moreover, about malt, new kinds of validation were used in order to estimate the real predictive power of the proposed calibration models and to understand the long-term effects. Furthermore, the precision of all the calibration models developed for malt evaluation was estimated and statistically compared with the reference methods, with good results. Then, new calibration models were developed for monitoring the malting process, measuring the moisture content and other malt quality parameters during germination. Moreover it was possible to obtain by NIR an estimate of the "malting quality" (MQ) of barley and to predict whether if its germination will be rapid and uniform and if a certain type of barley is suitable for the production of beer and spirits. Finally, the NIR technique was applied to monitor the brewing process, using correlations between NIR spectra of beer and analytical parameters, and to assess beer quality. These innovative results are potentially very useful for the actors involved in the beer production chain, especially the calibration models suitable for the control of the malting process and for the assessment of the “malting quality” of barley, which need to be deepened in future studies.
Resumo:
The goal of this dissertation is to use statistical tools to analyze specific financial risks that have played dominant roles in the US financial crisis of 2008-2009. The first risk relates to the level of aggregate stress in the financial markets. I estimate the impact of financial stress on economic activity and monetary policy using structural VAR analysis. The second set of risks concerns the US housing market. There are in fact two prominent risks associated with a US mortgage, as borrowers can both prepay or default on a mortgage. I test the existence of unobservable heterogeneity in the borrower's decision to default or prepay on his mortgage by estimating a multinomial logit model with borrower-specific random coefficients.
Resumo:
The consumer demand for natural, minimally processed, fresh like and functional food has lead to an increasing interest in emerging technologies. The aim of this PhD project was to study three innovative food processing technologies currently used in the food sector. Ultrasound-assisted freezing, vacuum impregnation and pulsed electric field have been investigated through laboratory scale systems and semi-industrial pilot plants. Furthermore, analytical and sensory techniques have been developed to evaluate the quality of food and vegetable matrix obtained by traditional and emerging processes. Ultrasound was found to be a valuable technique to improve the freezing process of potatoes, anticipating the beginning of the nucleation process, mainly when applied during the supercooling phase. A study of the effects of pulsed electric fields on phenol and enzymatic profile of melon juice has been realized and the statistical treatment of data was carried out through a response surface method. Next, flavour enrichment of apple sticks has been realized applying different techniques, as atmospheric, vacuum, ultrasound technologies and their combinations. The second section of the thesis deals with the development of analytical methods for the discrimination and quantification of phenol compounds in vegetable matrix, as chestnut bark extracts and olive mill waste water. The management of waste disposal in mill sector has been approached with the aim of reducing the amount of waste, and at the same time recovering valuable by-products, to be used in different industrial sectors. Finally, the sensory analysis of boiled potatoes has been carried out through the development of a quantitative descriptive procedure for the study of Italian and Mexican potato varieties. An update on flavour development in fresh and cooked potatoes has been realized and a sensory glossary, including general and specific definitions related to organic products, used in the European project Ecropolis, has been drafted.
Resumo:
In this work, new tools in atmospheric pollutant sampling and analysis were applied in order to go deeper in source apportionment study. The project was developed mainly by the study of atmospheric emission sources in a suburban area influenced by a municipal solid waste incinerator (MSWI), a medium-sized coastal tourist town and a motorway. Two main research lines were followed. For what concerns the first line, the potentiality of the use of PM samplers coupled with a wind select sensor was assessed. Results showed that they may be a valid support in source apportionment studies. However, meteorological and territorial conditions could strongly affect the results. Moreover, new markers were investigated, particularly focusing on the processes of biomass burning. OC revealed a good biomass combustion process indicator, as well as all determined organic compounds. Among metals, lead and aluminium are well related to the biomass combustion. Surprisingly PM was not enriched of potassium during bonfire event. The second research line consists on the application of Positive Matrix factorization (PMF), a new statistical tool in data analysis. This new technique was applied to datasets which refer to different time resolution data. PMF application to atmospheric deposition fluxes identified six main sources affecting the area. The incinerator’s relative contribution seemed to be negligible. PMF analysis was then applied to PM2.5 collected with samplers coupled with a wind select sensor. The higher number of determined environmental indicators allowed to obtain more detailed results on the sources affecting the area. Vehicular traffic revealed the source of greatest concern for the study area. Also in this case, incinerator’s relative contribution seemed to be negligible. Finally, the application of PMF analysis to hourly aerosol data demonstrated that the higher the temporal resolution of the data was, the more the source profiles were close to the real one.
Resumo:
People are daily faced with intertemporal choice, i.e., choices differing in the timing of their consequences, frequently preferring smaller-sooner rewards over larger-delayed ones, reflecting temporal discounting of the value of future outcomes. This dissertation addresses two main goals. New evidence about the neural bases of intertemporal choice is provided. Following the disruption of either the medial orbitofrontal cortex or the insula, the willingness to wait for larger-delayed outcomes is affected in odd directions, suggesting the causal involvement of these areas in regulating the value computation of rewards available with different timings. These findings were also supported by a reported imaging study. Moreover, this dissertation provides new evidence about how temporal discounting can be modulated at a behavioral level through different manipulations, e.g., allowing individuals to think about the distant time, pairing rewards with aversive events, or changing their perceived spatial position. A relationship between intertemporal choice, moral judgements and aging is also discussed. All these findings link together to support a unitary neural model of temporal discounting according to which signals coming from several cortical (i.e., medial orbitofrontal cortex, insula) and subcortical regions (i.e., amygdala, ventral striatum) are integrated to represent the subjective value of both earlier and later rewards, under the top-down regulation of dorsolateral prefrontal cortex. The present findings also support the idea that the process of outcome evaluation is strictly related to the ability to pre-experience and envision future events through self-projection, the anticipation of visceral feelings associated with receiving rewards, and the psychological distance from rewards. Furthermore, taking into account the emotions and the state of arousal at the time of decision seems necessary to understand impulsivity associated with preferring smaller-sooner goods in place of larger-later goods.
Resumo:
The thesis is focused on the development of a method for the synthesis of silicon nanocrystals with different sizes, narrow size distribution, good optical properties and stability in air. The resulting silicon nanocrystals have been covalently functionalized with different chromophores with the aim to exploit the new electronic and chemical properties that emerge from the interaction between silicon nanocrystal surface and ligands. The purpose is to use these chromophores as light harvesting antennae, increasing the optical absorption of silicon nanocrystals. Functionalized silicon nanocrystals have been characterized with different analytical techniques leading to a good knowledge of optical properties of semiconductor quantum dots.
Resumo:
Noise is constant presence in measurements. Its origin is related to the microscopic properties of matter. Since the seminal work of Brown in 1828, the study of stochastic processes has gained an increasing interest with the development of new mathematical and analytical tools. In the last decades, the central role that noise plays in chemical and physiological processes has become recognized. The dual role of noise as nuisance/resource pushes towards the development of new decomposition techniques that divide a signal into its deterministic and stochastic components. In this thesis I show how methods based on Singular Spectrum Analysis have the right properties to fulfil the previously mentioned requirement. During my work I applied SSA to different signals of interest in chemistry: I developed a novel iterative procedure for the denoising of powder X-ray diffractograms; I “denoised” bi-dimensional images from experiments of electrochemiluminescence imaging of micro-beads obtaining new insight on ECL mechanism. I also used Principal Component Analysis to investigate the relationship between brain electrophysiological signals and voice emission.
Resumo:
In Europe, the current demand for vegetable oils and the need to find alternative crops for the regions most affected by climate change (i.e., Mediterranean basin) may be a launchpad for camelina [Camelina sativa (L.) Crantz] to be steadily introduced in European cropping systems. Camelina is mainly known for the unique composition of its oil, with a fatty acids profile including more than 50% content of essential linoleic and linolenic fatty acids, and a high tocopherol content. Being tocopherols part of the vitamin E family of antioxidants, the added value of growing camelina in harsh environments could be the enhancement of tocopherol content in camelina oil, thus having a more stable and nutritionally valuable product. With the final purpose of fully valorize camelina as a tolerant, valuable-oil producing crop for the Mediterranean basin, the main aim of this study was to investigate whether and how sowing date, cultivar choice, and abiotic stresses can affect tocopherol content and composition in camelina oil. The results showed that cultivar choice and growing conditions influenced total tocopherol, γ-tocopherol, and α-tocopherol contents. Moreover, heat stress trial revealed that high temperature increased α-tocopherol content, while no effect was observed in total tocopherols and in γ-tocopherol content. Finally, drought increased total tocopherols in camelina, and in drought-sensitive lines an increase in α-tocopherol was observed. This study allowed to acquire awareness on camelina resistance to abiotic stresses, coupled with a better knowledge on tocopherol content and composition in relation to cultivar, sowing date, and abiotic stresses. This will have an impact for the introduction of camelina as an alternative crop in harsher environments, such as the Mediterranean basin, to produce an oil suitable for food, feed, and industrial applications.
Resumo:
This research activity aims at providing a reliable estimation of particular state variables or parameters concerning the dynamics and performance optimization of a MotoGP-class motorcycle, integrating the classical model-based approach with new methodologies involving artificial intelligence. The first topic of the research focuses on the estimation of the thermal behavior of the MotoGP carbon braking system. Numerical tools are developed to assess the instantaneous surface temperature distribution in the motorcycle's front brake discs. Within this application other important brake parameters are identified using Kalman filters, such as the disc convection coefficient and the power distribution in the disc-pads contact region. Subsequently, a physical model of the brake is built to estimate the instantaneous braking torque. However, the results obtained with this approach are highly limited by the knowledge of the friction coefficient (μ) between the disc rotor and the pads. Since the value of μ is a highly nonlinear function of many variables (namely temperature, pressure and angular velocity of the disc), an analytical model for the friction coefficient estimation appears impractical to establish. To overcome this challenge, an innovative hybrid solution is implemented, combining the benefit of artificial intelligence (AI) with classical model-based approach. Indeed, the disc temperature estimated through the thermal model previously implemented is processed by a machine learning algorithm that outputs the actual value of the friction coefficient thus improving the braking torque computation performed by the physical model of the brake. Finally, the last topic of this research activity regards the development of an AI algorithm to estimate the current sideslip angle of the motorcycle's front tire. While a single-track motorcycle kinematic model and IMU accelerometer signals theoretically enable sideslip calculation, the presence of accelerometer noise leads to a significant drift over time. To address this issue, a long short-term memory (LSTM) network is implemented.
Resumo:
Among the experimental methods commonly used to define the behaviour of a full scale system, dynamic tests are the most complete and efficient procedures. A dynamic test is an experimental process, which would define a set of characteristic parameters of the dynamic behaviour of the system, such as natural frequencies of the structure, mode shapes and the corresponding modal damping values associated. An assessment of these modal characteristics can be used both to verify the theoretical assumptions of the project, to monitor the performance of the structural system during its operational use. The thesis is structured in the following chapters: The first introductive chapter recalls some basic notions of dynamics of structure, focusing the discussion on the problem of systems with multiply degrees of freedom (MDOF), which can represent a generic real system under study, when it is excited with harmonic force or in free vibration. The second chapter is entirely centred on to the problem of dynamic identification process of a structure, if it is subjected to an experimental test in forced vibrations. It first describes the construction of FRF through classical FFT of the recorded signal. A different method, also in the frequency domain, is subsequently introduced; it allows accurately to compute the FRF using the geometric characteristics of the ellipse that represents the direct input-output comparison. The two methods are compared and then the attention is focused on some advantages of the proposed methodology. The third chapter focuses on the study of real structures when they are subjected to experimental test, where the force is not known, like in an ambient or impact test. In this analysis we decided to use the CWT, which allows a simultaneous investigation in the time and frequency domain of a generic signal x(t). The CWT is first introduced to process free oscillations, with excellent results both in terms of frequencies, dampings and vibration modes. The application in the case of ambient vibrations defines accurate modal parameters of the system, although on the damping some important observations should be made. The fourth chapter is still on the problem of post processing data acquired after a vibration test, but this time through the application of discrete wavelet transform (DWT). In the first part the results obtained by the DWT are compared with those obtained by the application of CWT. Particular attention is given to the use of DWT as a tool for filtering the recorded signal, in fact in case of ambient vibrations the signals are often affected by the presence of a significant level of noise. The fifth chapter focuses on another important aspect of the identification process: the model updating. In this chapter, starting from the modal parameters obtained from some environmental vibration tests, performed by the University of Porto in 2008 and the University of Sheffild on the Humber Bridge in England, a FE model of the bridge is defined, in order to define what type of model is able to capture more accurately the real dynamic behaviour of the bridge. The sixth chapter outlines the necessary conclusions of the presented research. They concern the application of a method in the frequency domain in order to evaluate the modal parameters of a structure and its advantages, the advantages in applying a procedure based on the use of wavelet transforms in the process of identification in tests with unknown input and finally the problem of 3D modeling of systems with many degrees of freedom and with different types of uncertainty.
Resumo:
Il pomodoro è una delle colture principali del panorama agro-alimentare italiano e rappresenta un ingrediente base della tradizione culinaria nazionale. Il pomodoro lavorato dall’industria conserviera può essere trasformato in diverse tipologie merceologiche, che si differenziano in base alla tecniche di lavorazione impiegate ed alle caratteristiche del prodotto finito. la percentuale di spesa totale destinata all’acquisto di cibo fuori casa è in aumento a livello globale e l’interesse dell’industria alimentare nei confronti di questo canale di vendita è quindi crescente. Mentre sono numerose le indagine in letteratura che studiano i processi di acquisto dei consumatori finali, non ci sono evidenze di studi simili condotti sugli operatori del Food Service. Obiettivo principale della ricerca è quello di valutare le preferenze dei responsabili acquisti del settore Food Service per diverse tipologie di pomodoro trasformato, in relazione ad una gamma di attributi rilevanti del prodotto e di caratteristiche del cliente. La raccolta dei dati è avvenuta attraverso un esperimento di scelta ipotetico realizzato in Italia e alcuni mercati esteri. Dai risultati ottenuti dall’indagine emerge che i Pelati sono la categoria di pomodoro trasformato preferita dai responsabili degli acquisti del settore Food Service intervistati, con il 35% delle preferenze dichiarate nell'insieme dei contesti di scelta proposti, seguita dalla Polpa (25%), dalla Passata (20%) e dal Concentrato (15%). Dai risultati ottenuti dalla stima del modello econometrico Logit a parametri randomizzati è emerso che alcuni attributi qualitativi di fiducia (credence), spesso impiegati nelle strategie di differenziazione e posizionamento da parte dell’industria alimentare nel mercato Retail, possono rivestire un ruolo importante anche nell’influenzare le preferenze degli operatori del Food Service. Questo potrebbe quindi essere un interessante filone di ricerca da sviluppare nel futuro, possibilmente con l'impiego congiunto di metodologie di analisi basate su esperimenti di scelta ipotetici e non ipotetici.
Resumo:
The main goal of this thesis is to facilitate the process of industrial automated systems development applying formal methods to ensure the reliability of systems. A new formulation of distributed diagnosability problem in terms of Discrete Event Systems theory and automata framework is presented, which is then used to enforce the desired property of the system, rather then just verifying it. This approach tackles the state explosion problem with modeling patterns and new algorithms, aimed for verification of diagnosability property in the context of the distributed diagnosability problem. The concepts are validated with a newly developed software tool.