5 resultados para EXTRACELLULAR-MATRIX PROTEINS
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The cytotoxicity of dental composites has been attributed to the release of residual monomers from polymerized adhesive systems due to degradation processes or the incomplete polymerization of materials. 2-Hydroxyethyl methacrylate (HEMA) is one of the major components released from dental adhesives. Cytotoxic effects due to high concentrations of HEMA have already been investigated, but the influence of minor toxic concentrations for long-term exposition on specific proteins such as type I collagen and tenascin has not been studied in depth. The objective of this project was to study the effect of minor toxic concentrations of HEMA on human gingival fibroblasts (HGFs) and human pulp fibroblasts (HPFs), investigating modification in cell morphology, cell viability, and the influence on type I collagen and tenascin proteins. Different concentrations of the resin monomer and different times of exposition were tested on both cell lines. The cell vitality was determined by MTT assay, and high-resolution scanning electron microscopy analysis was performed to evaluate differences in cell morphology before and after treatment. To evaluate the variability in the expression and synthesis of procollagen α1 type I and tenascin proteins on HGFs and HPFs treated with HEMA at different concentrations immunofluorescence, RT-PCR and western blot analysis, were carried out. The treatments on HGFs with 3mmol/L HEMA, showed a strong reduction of procollagen α1 type I protein at 72h and 96h, demonstrating that HEMA interferes both with the synthesis of the procollagen α1 type I protein and its mRNA expression. The results obtained on HPFs treated with different concentrations of HEMA ranging from 0,5mmol/L to 3mmol/L and for different exposition times showed a strong reduction in cell viability in specimens treated for 96h and 168h, while immunofluorescence and western blotting analysis demonstrated a reduction of procollagen α1 type I and an overexpression of tenascin protein. In conclusion, our results showed that the concentrations of HEMA we tested, effect the normal cell production and activity, such as the synthesis of some dental extracellular matrix proteins.
Resumo:
The biomechanical roles of both tendons and ligaments are fulfilled by extracellular matrix of these tissues. In particular, tension is mainly transmitted and resisted by fibrous proteins (collagen, elastin), whereas compressive load is absorbed by water-soluble glycosaminoglycans (GAGs). GAGs spanning the interfibrillar spaces and interacting with fibrils also seem to play a part in transmitting and resisting tensile stresses. Apart from different functional roles and collagen array, tendons and ligaments share the same basic structure showing periodic undulations of collagen fibers or crimps. Each crimp is composed of many knots of each single fibril or fibrillar crimps. Fibrillar and fiber crimps act as shock absorbers during the initial elongation of both tendons and ligaments and assist the elastic recoil of fibrils and fibers when the tensile stress is removed. The aim of this thesis was to evaluate whether GAGs directly affect the 3D microstructural integrity of fibrillar crimp and fiber crimps in both tendons and ligaments. Achilles tendons and medial collateral ligaments of the knee from eight female Sprague-Dawley rats (90 days old) were digested with chondroitinase ABC to remove GAGs and observed under a scanning electron microscope (SEM). In addition, isolated fibrils from these tissues obtained by mechanical homogenization were analyzed by a transmission electron microscope (TEM). Both samples digested with chondroitinase ABC or mechanically disrupted still showed crimps and fibrillar crimps comparable to tissues with a normal GAGs content. All fibrils in the fibrillar crimp region always twisted leftwards, thus changing their running plane, and then sharply bent, changing their course on a new plane. These data suggest that GAGs do not affect structural integrity or fibrillar crimps functions that seem mainly related to the local fibril leftward twisting and the alternating handedness of collagen from a molecular to a supramolecular level.
Resumo:
Streptococcus pneumoniae is an important life threatening human pathogen causing agent of invasive diseases such as otitis media, pneumonia, sepsis and meningitis, but is also a common inhabitant of the respiratory tract of children and healthy adults. Likewise most streptococci, S. pneumoniae decorates its surface with adhesive pili, composed of covalently linked subunits and involved in the attachment to epithelial cells and virulence. The pneumococcal pili are encoded by two genomic regions, pilus islet 1 (PI-1), and pilus islet-2 (PI-2), which are present in about 30% and 16% of the pneumococcal strains, respectively. PI-1 exists in three clonally related variants, whereas PI-2 is highly conserved. The presence of the islets does not correlate with the serotype of the strains, but with the genotype (as determined by Multi Locus Sequence Typing). The prevalence of PI-1 and PI-2 positive strains is similar in isolates from invasive disease and carriage. To better dissect a possible association between PIs presence and disease we evaluated the distribution of the two PIs in a panel of 113 acute otitis media (AOM) clinical isolates from Israel. PI-1 was present in 30.1% (N=34) of the isolates tested, and PI-2 in 7% (N=8). We found that 50% of the PI-1 positive isolates belonged to the international clones Spain9V-3 (ST156) and Taiwan19F-14 (ST236), and that PI-2 was not present in the absence of Pl-1. In conclusion, there was no correlation between PIs presence and AOM, and, in general, the observed differences in PIs prevalence are strictly dependent upon regional differences in the distribution of the clones. Finally, in the AOM collection the prevalence of PI-1 was higher among antibiotic resistant isolates, confirming previous indications obtained by the in silico analysis of the MLST database collection. Since the pilus-1 subunits were shown to confer protection in mouse models of infection both in active and passive immunization studies, and were regarded as potential candidates for a new generation of protein-based vaccines, the functional characterization was mainly focused on S. pneumoniae pilus -1 components. The pneumococcal pilus-1 is composed of three subunits, RrgA, RrgB and RrgC, each stabilized by intra-molecular isopeptide bonds and covalently polymerized by means of inter-molecular isopeptide bonds to form an extended fibre. The pilus shaft is a multimeric structure mainly composed by the RrgB backbone subunit. The minor ancillary proteins are located at the tip and at the base of the pilus, where they have been proposed to act as the major adhesin (RrgA) and as the pilus anchor (RrgC), respectively. RrgA is protective in in vivo mouse models, and exists in two variants (clades I and II). Mapping of the sequence variability onto the RrgA structure predicted from X-ray data showed that the diversity was restricted to the “head” of the protein, which contains the putative binding domains, whereas the elongated “stalk” was mostly conserved. To investigate whether this variability could influence the adhesive capacity of RrgA and to map the regions important for binding, two full-length protein variants and three recombinant RrgA portions were tested for adhesion to lung epithelial cells and to purified extracellular matrix (ECM) components. The two RrgA variants displayed similar binding abilities, whereas none of the recombinant fragments adhered at levels comparable to those of the full-length protein, suggesting that proper folding and structural arrangement are crucial to retain protein functionality. Furthermore, the two RrgA variants were shown to be cross-reactive in vitro and cross-protective in vivo in a murine model of passive immunization. Taken together, these data indicate that the region implicated in adhesion and the functional epitopes responsible for the protective ability of RrgA may be conserved and that the considerable level of variation found within the “head” domain of RrgA may have been generated by immunologic pressure without impairing the functional integrity of the pilus.
Resumo:
Le cardiomiopatie che insorgono a seguito di infarto miocardico sono causa di elevata morbilità e mortalità dalle importanti ricadute cliniche, dovute alle patologie insorgenti a seguito dell’ischemia e della cicatrice post-infatuale. Il ventricolo sinistro danneggiato va incontro a un rimodellamento progressivo, con perdita di cardiomiociti e proliferazione dei fibroblasti, risultante in un’architettura e in una funzionalità dell’organo distorta. I fibroblasti cardiaci sono i principali responsabili della fibrosi, il processo di cicatrizzazione caratterizzato da un’eccessiva deposizione di matrice extracellulare (ECM). Negli ultimi anni gli sforzi del nostro laboratorio sono stati volti a cercare di risolvere questo problema, attraverso l’uso di una molecola da noi sintetizzata, un estere misto degli acidi butirrico, retinoico e ialuronico, HBR, capace di commissionare le cellule staminali in senso cardio-vascolare. Studi in vivo mostrano come l’iniezione diretta di HBR in cuori di animali sottoposti a infarto sperimentale, sia in grado, tra le atre cose, di diminuire la fibrosi cardiaca. Sulla base di questa evidenza abbiamo cercato di capire come e se HBR agisse direttamente sui fibroblasti, indagando i meccanismi coinvolti nella riduzione della fibrosi in vivo.. In questa tesi abbiamo dimostrato come HBR abbia un’azione diretta su fibroblasti, inibendone la proliferazione, senza effetti citotossici. Inoltre HBR induce una significativa riduzione della deposizione di collagene.. HBR agisce sull’espressione genica e sulla sintesi proteica, sopprimendo la trascrizione dei geni del collagene, così come dell’a-sma, inibendo la trasizione fibroblasti-miofibroblasti, e promuovendo la vasculogenesi (attraverso VEGF), la chemoattrazione di cellule staminali (attraverso SDF) e un’attività antifibrotica (inibendo CTGF). HBR sembra modulare l’espressione genica agendo direttamente sulle HDAC, probabilmente grazie alla subunità BU. L’abilità di HBR di ridurre la fibrosi post-infartuale, come dimostrato dai nostri studi in vivo ed in vitro, apre la strada a importanti prospettive terapeutiche.
Resumo:
Gliomas are one of the most frequent primary malignant brain tumors. Acquisition of stem-like features likely contributes to the malignant nature of high-grade gliomas and may be responsible for the initiation, growth, and recurrence of these tumors. In this regard, although the traditional 2D cell culture system has been widely used in cancer research, it shows limitations in maintaining the stemness properties of cancer and in mimicking the in vivo microenvironment. In order to overcome these limitations, different three-dimensional (3D) culture systems have been developed to mimic better the tumor microenvironment. Cancer cells cultured in 3D structures may represent a more reliable in vitro model due to increased cell-cell and cell-extracellular matrix (ECM) interaction. Several attempts to recreate brain cancer tissue in vitro are described in literature. However, to date, it is still unclear which main characteristics the ideal model should reproduce. The overall goal of this project was the development of a 3D in vitro model able to reproduce the brain ECM microenvironment and to recapitulate pathological condition for the study of tumor stroma interactions, tumor invasion ability, and molecular phenotype of glioma cells. We performed an in silico bioinformatic analysis using GEPIA2 Software to compare the expression level of seven matrix protein in the LGG tumors with healthy tissues. Then, we carried out a FFPE retrospective study in order to evaluate the percentage of expression of selected proteins. Thus, we developed a 3D scaffold composed by Hyaluronic Acid and Collagen IV in a ratio of 50:50. We used two astrocytoma cell lines, HTB-12 and HTB-13. In conclusion, we developed an in vitro 3D model able to reproduce the composition of brain tumor ECM, demonstrating that it is a feasible platform to investigate the interaction between tumor cells and the matrix.