8 resultados para EVOLUTIONARY HISTORY

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the recent years TNFRSF13B coding variants have been implicated by clinical genetics studies in Common Variable Immunodeficiency (CVID), the most common clinically relevant primary immunodeficiency in individuals of European ancestry, but their functional effects in relation to the development of the disease have not been entirely established. To examine the potential contribution of such variants to CVID, the more comprehensive perspective of an evolutionary approach was applied in this study, underling the belief that evolutionary genetics methods can play a role in dissecting the origin, causes and diffusion of human diseases, representing a powerful tool also in human health research. For this purpose, TNFRSF13B coding region was sequenced in 451 healthy individuals belonging to 26 worldwide populations, in addition to 96 control, 77 CVID and 38 Selective IgA Deficiency (IgAD) individuals from Italy, leading to the first achievement of a global picture of TNFRSF13B nucleotide diversity and haplotype structure and making suggestion of its evolutionary history possible. A slow rate of evolution, within our species and when compared to the chimpanzee, low levels of genetic diversity geographical structure and the absence of recent population specific selective pressures were observed for the examined genomic region, suggesting that geographical distribution of its variability is more plausibly related to its involvement also in innate immunity rather than in adaptive immunity only. This, together with the extremely subtle disease/healthy samples differences observed, suggests that CVID might be more likely related to still unknown environmental and genetic factors, rather than to the nature of TNFRSF13B variants only.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Although ability to digest lactose generally declines after weaning in all mammals, in some human populations it persists also in adult individuals, a condition named lactase persistence (LP). Studies on the prevalence of the LP phenotype in worldwide human populations have shown that the frequency of this trait is highly variable in different ethnic groups, appearing to be positively correlated with the importance of milk in the diet. In particular, several single-nucleotide polymorphisms (SNPs) in the proximity of the LCT gene have been proved to be associated with LP. Nevertheless, few studies have till now analyzed genetic variation underlying LP in a wide set of Eurasian populations and, especially, in the Italian one. In the present study, we thus typed 40 SNPs surrounding the LCT gene in more than 1,000 samples from Italian and Arabic peninsulas to investigate patterns of LP-related genetic diversity in two regions which have played a pivotal role in the recent human evolutionary history according to their geographical position and historical/archaeological records. Our results underline a high and complex variability of the explored genomic region in both studied populations. In particular, a clear diversification of Northern Italian groups from the rest of the peninsula, was observed, with the formers being genetically more similar to Northern European populations than to Southern Italians. These observation are consistent with known decreasing pattern of LP from Northern to Southern Italy and suggest the possibility of an independent evolution of LP-associated genotypes in Northern Italy. A similar scenario was observed in the Arabian peninsula, with Dhofari Arabs from Southern Oman and Yemeni clustering together with respect to Arabs from Northern Oman and the subgroup of Omanis of Asian origin which appeared instead to be genetically closer to Europeans than to the rest of Arabic groups.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The subject of this doctoral dissertation concerns the definition of a new methodology for the morphological and morphometric study of fossilized human teeth, and therefore strives to provide a contribution to the reconstruction of human evolutionary history that proposes to extend to the different species of hominid fossils. Standardized investigative methodologies are lacking both regarding the orientation of teeth subject to study and in the analysis that can be carried out on these teeth once they are oriented. The opportunity to standardize a primary analysis methodology is furnished by the study of certain early Neanderthal and preneanderthal molars recovered in two caves in southern Italy [Grotta Taddeo (Taddeo Cave) and Grotta del Poggio (Poggio Cave), near Marina di Camerata, Campania]. To these we can add other molars of Neanderthal and modern man of the upper Paleolithic era, specifically scanned in the paleoanthropology laboratory of the University of Arkansas (Fayetteville, Arkansas, USA), in order to increase the paleoanthropological sample data and thereby make the final results of the analyses more significant. The new analysis methodology is rendered as follows: 1. Standardization of an orientation system for primary molars (superior and inferior), starting from a scan of a sample of 30 molars belonging to modern man (15 M1 inferior and 15 M1 superior), the definition of landmarks, the comparison of various systems and the choice of a system of orientation for each of the two dental typologies. 2. The definition of an analysis procedure that considers only the first 4 millimeters of the dental crown starting from the collar: 5 sections parallel to the plane according to which the tooth has been oriented are carried out, spaced 1 millimeter between them. The intention is to determine a method that allows for the differentiation of fossilized species even in the presence of worn teeth. 3. Results and Conclusions. The new approach to the study of teeth provides a considerable quantity of information that can better be evaluated by increasing the fossil sample data. It has been demonstrated to be a valid tool in evolutionary classification that has allowed (us) to differentiate the Neanderthal sample from that of modern man. In a particular sense the molars of Grotta Taddeo, which up until this point it has not been possible to determine with exactness their species of origin, through the present research they are classified as Neanderthal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tuber borchii (Ascomycota, order Pezizales) is highly valued truffle sold in local markets in Italy. Despite its economic importance, knowledge on its distribution and population variation is scarce. The objective of this work was to investigate the evolutionary forces shaping the genetic structure of this fungus using coalescent and phylogenetic methods to reconstruct the evolutionary history of populations in Italy. To assess population structure, 61 specimens were collected from 11 different Provinces of Italy. Sampling was stratified across hosts and habitats to maximize coverage in native oak and pine stands and both mychorrizae and fruiting bodies were collected. Samples were identified considering anatomo-morphological characters. DNA was extracted and both multilocus (AFLP) and single-locus (18 loci from rDNA, nDNA, and mtDNA) approaches were used to look for polymorphisms. Screening AFLP profiles, both Jaccard and Dice coefficients of similarity were utilized to transform binary matrix into a distance matrix and then to desume Neighbour-Joining trees. Though these are only preliminary examinations, phylogenetic trees were totally concordant with those deriving from single locus analyses. Phylogenetic analyses of the nuclear loci were performed using maximum likelihood with PAUP and a combined phylogenetic inference, using Bayesian estimation with all nuclear gene regions, was carried out. To reconstruct the evolutionary history, we estimated recurrent migration, migration across the history of the sample, and estimated the mutation and approximate age of mutations in each tree using SNAP Workbench. The combined phylogenetic tree using Bayesian estimation suggests that there are two main haplotypes that are difficult to be differentiated on the basis of morphology, of ecological parameters and symbiontic tree. Between these two lineages, that occur in sympatry within T. borchii populations, there is no evidence of recurrent migration. However, migration over the history of the sample was asymmetrical suggesting that isolation was a result of interrupted gene flow followed by range expansion. Low levels of divergence between the haplotypes indicate that there are likely to be two cryptic species within the T. borchii population sampled. Our results suggest that isolation between populations of T. borchii could have led to reproductive isolation between two lineages. This isolation is likely due to sympatric speciation caused by a multiple colonization from different refugia or a recent isolation. In attempting to determinate whether these haplotypes represent separate species or a partition of the same species we applied Biological and Mechanistic species Concepts. Notwithstanding, further analyses are necessary to evaluate if selection favoured premating or post-mating isolation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The vast majority of known proteins have not yet been experimentally characterized and little is known about their function. The design and implementation of computational tools can provide insight into the function of proteins based on their sequence, their structure, their evolutionary history and their association with other proteins. Knowledge of the three-dimensional (3D) structure of a protein can lead to a deep understanding of its mode of action and interaction, but currently the structures of <1% of sequences have been experimentally solved. For this reason, it became urgent to develop new methods that are able to computationally extract relevant information from protein sequence and structure. The starting point of my work has been the study of the properties of contacts between protein residues, since they constrain protein folding and characterize different protein structures. Prediction of residue contacts in proteins is an interesting problem whose solution may be useful in protein folding recognition and de novo design. The prediction of these contacts requires the study of the protein inter-residue distances related to the specific type of amino acid pair that are encoded in the so-called contact map. An interesting new way of analyzing those structures came out when network studies were introduced, with pivotal papers demonstrating that protein contact networks also exhibit small-world behavior. In order to highlight constraints for the prediction of protein contact maps and for applications in the field of protein structure prediction and/or reconstruction from experimentally determined contact maps, I studied to which extent the characteristic path length and clustering coefficient of the protein contacts network are values that reveal characteristic features of protein contact maps. Provided that residue contacts are known for a protein sequence, the major features of its 3D structure could be deduced by combining this knowledge with correctly predicted motifs of secondary structure. In the second part of my work I focused on a particular protein structural motif, the coiled-coil, known to mediate a variety of fundamental biological interactions. Coiled-coils are found in a variety of structural forms and in a wide range of proteins including, for example, small units such as leucine zippers that drive the dimerization of many transcription factors or more complex structures such as the family of viral proteins responsible for virus-host membrane fusion. The coiled-coil structural motif is estimated to account for 5-10% of the protein sequences in the various genomes. Given their biological importance, in my work I introduced a Hidden Markov Model (HMM) that exploits the evolutionary information derived from multiple sequence alignments, to predict coiled-coil regions and to discriminate coiled-coil sequences. The results indicate that the new HMM outperforms all the existing programs and can be adopted for the coiled-coil prediction and for large-scale genome annotation. Genome annotation is a key issue in modern computational biology, being the starting point towards the understanding of the complex processes involved in biological networks. The rapid growth in the number of protein sequences and structures available poses new fundamental problems that still deserve an interpretation. Nevertheless, these data are at the basis of the design of new strategies for tackling problems such as the prediction of protein structure and function. Experimental determination of the functions of all these proteins would be a hugely time-consuming and costly task and, in most instances, has not been carried out. As an example, currently, approximately only 20% of annotated proteins in the Homo sapiens genome have been experimentally characterized. A commonly adopted procedure for annotating protein sequences relies on the "inheritance through homology" based on the notion that similar sequences share similar functions and structures. This procedure consists in the assignment of sequences to a specific group of functionally related sequences which had been grouped through clustering techniques. The clustering procedure is based on suitable similarity rules, since predicting protein structure and function from sequence largely depends on the value of sequence identity. However, additional levels of complexity are due to multi-domain proteins, to proteins that share common domains but that do not necessarily share the same function, to the finding that different combinations of shared domains can lead to different biological roles. In the last part of this study I developed and validate a system that contributes to sequence annotation by taking advantage of a validated transfer through inheritance procedure of the molecular functions and of the structural templates. After a cross-genome comparison with the BLAST program, clusters were built on the basis of two stringent constraints on sequence identity and coverage of the alignment. The adopted measure explicity answers to the problem of multi-domain proteins annotation and allows a fine grain division of the whole set of proteomes used, that ensures cluster homogeneity in terms of sequence length. A high level of coverage of structure templates on the length of protein sequences within clusters ensures that multi-domain proteins when present can be templates for sequences of similar length. This annotation procedure includes the possibility of reliably transferring statistically validated functions and structures to sequences considering information available in the present data bases of molecular functions and structures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work is about the role that environment plays in the production of evolutionary significant variations. It starts with an historical introduction about the concept of variation and the role of environment in its production. Then, I show how a lack of attention to these topics may lead to serious mistakes in data interpretation. A statistical re-analysis of published data on the effects of malnutrition on dental eruption, shows that what has been interpreted as an increase in the mean value, is actually linked to increase of variability. In Chapter 3 I present the topic of development as a link between variability and environmental influence, giving a review of the possible mechanisms by which development influences evolutionary dynamics. Chapter 4 is the core chapter of the thesis; I investigated the role of environment in the development of dental morphology. I used dental hypoplasia as a marker of stress, characterizing two groups. Comparing the morphology of upper molars in the two groups, three major results came out: (i) there is a significant effect of environmental stressors on the overall morphology of upper molars; (ii) the developmental response increases morphological variability of the stressed population; (iii) increase of variability is directional: stressed individuals have increased cusps dimensions and number. I also hypothesized the molecular mechanisms that could be responsible of the observed effects. In Chapter 5, I present future perspectives for developing this research. The direction of dental development response is the same direction of the trend in mammalian dental evolution. Since malnutrition triggers the developmental response, and this particular kind of stressor must have been very common in our class evolutionary history, I propose the possibility that environmental stress actively influenced mammals evolution. Moreover, I discuss the possibility of reconsidering the role of natural selection in the evolution of dental morphology.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two Amerindian populations from the Peruvian Amazon (Yanesha) and from rural lowlands of the Argentinean Gran Chaco (Wichi) were analyzed. They represent two case study of the South American genetic variability. The Yanesha represent a model of population isolated for long-time in the Amazon rainforest, characterized by environmental and altitudinal stratifications. The Wichi represent a model of population living in an area recently colonized by European populations (the Criollos are the population of the admixed descendents), whose aim is to depict the native ancestral gene pool and the degree of admixture, in relation to the very high prevalence of Chagas disease. The methods used for the genotyping are common, concerning the Y chromosome markers (male lineage) and the mitochondrial markers (maternal lineage). The determination of the phylogeographic diagnostic polymorphisms was carried out by the classical techniques of PCR, restriction enzymes, sequencing and specific mini-sequencing. New method for the detection of the protozoa Trypanosoma cruzi was developed by means of the nested PCR. The main results show patterns of genetic stratification in Yanesha forest communities, referable to different migrations at different times, estimated by Bayesian analyses. In particular Yanesha were considered as a population of transition between the Amazon basin and the Andean Cordillera, evaluating the potential migration routes and the separation of clusters of community in relation to different genetic bio-ancestry. As the Wichi, the gene pool analyzed appears clearly differentiated by the admixed sympatric Criollos, due to strict social practices (deeply analyzed with the support of cultural anthropological tools) that have preserved the native identity at a diachronic level. A pattern of distribution of the seropositivity in relation to the different phylogenetic lineages (the adaptation in evolutionary terms) does not appear, neither Amerindian nor European, but in relation to environmental and living conditions of the two distinct subpopulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetic differences among human groups can be ascribed both to the broad-scale extents of pre-historical and historical migrations and to the fine-scale impacts of socio-cultural and geographic heterogeneity. In this thesis, the genetic information provided by uniparental markers were exploited to address different aspects of the Italian population history, by combining macro- and micro-geographic investigations at different spatial and temporal scales. To firstly assess the overall Italian variability, Y-chromosome and mtDNA markers were deeply typed in ~900 individuals from continental Italy, Sicily and Sardinia. Sex-biased patterns and contrasting demographic histories were observed for males and females. Differential European and Mediterranean contributions were invoked to explain the paternal genetic sub-structure observed in peninsular Italy, compared to the homogeneous maternal genetic landscape. If Neolithic showed to be one principal determinant of the detected paternal structure, local insights into specific Italian regional contexts highlighted the importance of Post-Neolithic contributions. Among them, migrations from the Balkans (particularly Greece) during late Metal Ages, played a relevant role in the cultural and genetic transitions occurred in Sicily and Southern Italy. On a finer geographic and temporal perspective, the more recent layers of Italian genetic history and some aspects of the gene-culture interaction were assessed by exploring the genetic variability within two “marginal populations”: Arbereshe of Southern Italy and Partecipanza in Northern Italy. The Arbereshe are Albanian-speaking communities settled in Sicily and Calabria since the end of Middle Ages. Despite sharing common genetic and cultural backgrounds, these groups revealed diverging micro-evolutionary histories, implying different founding events and different patterns of cultural isolation and local admixture. Partecipanza is an idiosyncratic institution of Medieval origin aimed at sharing and devolving collective lands. This case-study exemplified that socio-economic stratification within the same population may induce sex-biased genetic structuring and the maintenance of otherwise hidden historical genetic traces.