1 resultado para ERP-järjestelmät
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Filtro por publicador
- Aberdeen University (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (15)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (3)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (11)
- Aston University Research Archive (36)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (2)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (68)
- Boston University Digital Common (1)
- Brock University, Canada (18)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- Cambridge University Engineering Department Publications Database (2)
- CentAUR: Central Archive University of Reading - UK (35)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (43)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Montana Tech (2)
- Digital Commons at Florida International University (2)
- Digital Peer Publishing (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (7)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (5)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (1)
- Greenwich Academic Literature Archive - UK (2)
- Helda - Digital Repository of University of Helsinki (32)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (1)
- Infoteca EMBRAPA (1)
- Instituto Politécnico de Leiria (2)
- Instituto Politécnico do Porto, Portugal (6)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (4)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Memoria Académica - FaHCE, UNLP - Argentina (54)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (4)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (10)
- Queensland University of Technology - ePrints Archive (78)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (3)
- RDBU - Repositório Digital da Biblioteca da Unisinos (3)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- REPOSITÓRIO ABERTO do Instituto Superior Miguel Torga - Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositorio de Tesis - USAT - Universidad Católica Santo Toribio de Mogrovejo - Peru (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (17)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (34)
- Research Open Access Repository of the University of East London. (4)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (4)
- SAPIENTIA - Universidade do Algarve - Portugal (3)
- Universidad Autónoma de Nuevo León, Mexico (3)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (17)
- Universidad Politécnica de Madrid (5)
- Universidade Complutense de Madrid (2)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (7)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (1)
- Université de Montréal (1)
- Université de Montréal, Canada (24)
- University of Michigan (1)
- University of Queensland eSpace - Australia (10)
- University of Southampton, United Kingdom (1)
- University of Washington (2)
- WestminsterResearch - UK (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
The monitoring of cognitive functions aims at gaining information about the current cognitive state of the user by decoding brain signals. In recent years, this approach allowed to acquire valuable information about the cognitive aspects regarding the interaction of humans with external world. From this consideration, researchers started to consider passive application of brain–computer interface (BCI) in order to provide a novel input modality for technical systems solely based on brain activity. The objective of this thesis is to demonstrate how the passive Brain Computer Interfaces (BCIs) applications can be used to assess the mental states of the users, in order to improve the human machine interaction. Two main studies has been proposed. The first one allows to investigate whatever the Event Related Potentials (ERPs) morphological variations can be used to predict the users’ mental states (e.g. attentional resources, mental workload) during different reactive BCI tasks (e.g. P300-based BCIs), and if these information can predict the subjects’ performance in performing the tasks. In the second study, a passive BCI system able to online estimate the mental workload of the user by relying on the combination of the EEG and the ECG biosignals has been proposed. The latter study has been performed by simulating an operative scenario, in which the occurrence of errors or lack of performance could have significant consequences. The results showed that the proposed system is able to estimate online the mental workload of the subjects discriminating three different difficulty level of the tasks ensuring a high reliability.