6 resultados para EPITHELIAL-MESENCHYMAL INTERACTIONS
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
During my PhD I have been involved in several projects regarding the morphogenesis of the follicular epithelium, such as the analysis of the pathways that correlate follicular epithelium patterning and eggshell genes expression. Moreover, I used the follicular epithelium as a model system to analyze the function of the Drosophila homolog of the human von Hippel-Lindau (d-VHL) during oogenesis, in order to gain insight into the role of h-VHL for the pathogenesis of VHL disease. h-VHL is implicated in a variety of processes and there is now a greater appreciation of HIF-independent h-VHL functions that are relevant to tumour development, including maintenance and organization of the primary cilium, maintenance of the differentiated phenotype in renal cells and regulation of epithelial-mesenchymal transition. However, the function of h-VHL gene during development has not been fully understood. It was previously shown that d-VHL down-regulates the motility of tubular epithelial cells (tracheal cells) during embryogenesis. Epithelial morphogenesis is important for organogenesis and pivotal for carcinogenesis, but mechanisms that control it are poorly understood. The Drosophila follicular epithelium is a genetically tractable model to understand these mechanisms in vivo. Therefore, to examine whether d-VHL has a role in epithelial morphogenesis and maintenance, I performed genetic and molecular analyses by using in vivo and in vitro approaches. From my analysis, I determined that d-VHL binds to and stabilizes microtubules. Loss of d-VHL depolymerizes the microtubule network during oogenesis, leading to a possible deregulation in the subcellular trafficking transport of polarity markers from Golgi apparatus to the different domains in which follicle cells are divided. The analysis carried out has allowed to establish a significant role of d-VHL in the maintenance of the follicular epithelium integrity.
Resumo:
L’infiammazione cronica è un fattore di rischio di insorgenza del cancro, e la citochina infiammatoria IL-6 gioca un ruolo importante nella tumorigenesi. In questo studio abbiamo dimostrato che L’IL-6 down-regola l'espressione e l'attività di p53. In linee cellulari umane, IL-6 stimola la trascrizione dell’rRNA mediante espressione della proteina c-myc a livello post-trascrizionale in un meccanismo p38MAPK-dipendente. L'up-regolazione della biogenesi ribosomiale riduce l'espressione di p53 attraverso l'attivazione della via della proteina ribosomale-MDM2. La down-regolazione di p53 produce l’acquisizione di modifiche fenotipiche e funzionali caratteristiche della epitelio mesenchimale di transizione, un processo associato a trasformazione maligna e progressione tumorale. I nostri dati mostrano che questi cambiamenti avvengono anche nelle cellule epiteliali del colon di pazienti affetti da colite ulcerosa, un esempio rappresentativo di una infiammazione cronica soggetta a trasformazione neoplastica, che scompaiono dopo trattamento con farmaci antinfiammatori. Questi risultati svelano un nuovo effetto oncogenico indotto dall’IL-6 che può contribuire notevolmente ad aumentare il rischio di sviluppare il cancro non solo in pazienti con infiammazioni croniche, ma anche in quei pazienti con condizioni patologiche caratterizzate da elevato livello di IL-6 nel plasma, quali l'obesità e e il diabete mellito di tipo 2.
Resumo:
Cutaneous melanoma (CM) is a potentially lethal form of skin cancer and its most important histopathologic factor for staging is Breslow thickness (BT). Its correct determination is fundamental for pathologists. A deeper understanding of the molecular processes guiding CM pathogenesis could improve diagnosis, treatment and prognosis. MicroRNAs (miRNAs) play a key role in CM biology. The firs aim was to investigate miRNA expression in reference to BT assessment. We found that the combined miRNA expression of miR-21-5p and miR-146a-5p above or below 1.5 was significantly associated with overall survival and successfully identified all superficially spreading melanoma (SSM) patients with relapsing suggesting that the combined assessment of these miRNAs expression could aid in SSM staging. Secondly, we focus on multiple primary melanoma (MPM) patients, which develop multiple primary melanomas in their lifetime, and represent a model of high-risk CM occurrence. We explored the miRNome of single CM and MPM: CM and MPM present several dysregulated miRNAs, including key miRNAs involved in epithelial-mesenchymal transition. A different miRNA profile was observed between 1st and 2nd melanoma from the same patient. MiRNA target analysis revealed a more differentiated and less invasive status of MPMs compared to CMs. This characterization of the miRNA regulatory network of MPMs highlights molecular features differentiating this subtype from CM. Recently, NGS experiments revealed the existence of miRNA variants (isomiRs) with different length and sequence. We identified a shorter 3’isoform as tenfold over-represented compared to the canonical form of miR-125a-5p. Target analysis revealed that miRNA shortening could change the pattern of target gene regulation. Finally, we study miRNA and isomiR dysregulation in benign nevi (BN) and CM and in CM and melanoma metastasis. The reported non-random dysregulation of specific isomiRs contributes to the understanding of the complex melanoma pathogenesis and serves as the basis for further functional studies.
Resumo:
In the last decades mesenchymal stromal cells (MSC), intriguing for their multilineage plasticity and their proliferation activity in vitro, have been intensively studied for innovative therapeutic applications. In the first project, a new method to expand in vitro adipose derived-MSC (ASC) while maintaining their progenitor properties have been investigated. ASC are cultured in the same flask for 28 days in order to allow cell-extracellular matrix and cell-cell interactions and to mimic in vivo niche. ASC cultured with this method (Unpass cells) were compared with ASC cultured under classic condition (Pass cells). Unpass and Pass cells were characterized in terms of clonogenicity, proliferation, stemness gene expression, differentiation in vitro and in vivo and results obtained showed that Unpass cells preserve their stemness and phenotypic properties suggesting a fundamental role of the niche in the maintenance of ASC progenitor features. Our data suggests alternative culture conditions for the expansion of ASC ex vivo which could increase the performance of ASC in regenerative applications. In vivo MSC tracking is essential in order to assess their homing and migration. Super-paramagnetic iron oxide nanoparticles (SPION) have been used to track MSC in vivo due to their biocompatibility and traceability by MRI. In the second project a new generation of magnetic nanoparticles (MNP) used to label MSC were tested. These MNP have been functionalized with hyperbranched poly(epsilon-lysine)dendrons (G3CB) in order to interact with membrane glycocalix of the cells avoiding their internalization and preventing any cytotoxic effects. In literature it is reported that labeling of MSC with SPION takes long time of incubation. In our experiments after 15min of incubation with G3CB-MNP more then 80% of MSC were labeled. The data obtained from cytotoxic, proliferation and differentiation assay showed that labeling does not affect MSC properties suggesting a potential application of G3CB nano-particles in regenerative medicine.
Resumo:
In veterinary medicine, the ability to classify mammary tumours based on the molecular profile and also determine whether the immunophenotype of the regional lymph node and/or systemic metastases is equal to that of the primary tumor may be predictive on the estimation of the effectiveness of various cancer treatments that can be scheduled. Therefore, aims, developed as projects, of the past three years have been (1) to define the molecular phenotype of feline mammary carcinomas and their lymph node metastases according to a previous modified algorithm and to demonstrate the concordance or discordance of the molecular profile between the primary tumour and lymph node metastasis, (2) to analyze, in female dogs, the relationship between the primary mammary tumor and its lymph node metastasis based on immunohistochemical molecular characterization in order to develop the most specific prognostic-predictive models and targeted therapeutic options, and (3) to evaluate the molecular trend of cancer from its primary location to systemic metastases in three cats and two dogs with mammary tumors. The studies on mammary tumours, particularly in dogs, have drawn gradually increasing attention not exclusively to the epithelial component, but also to the myoepithelial cells. The lack of complete information on a valid panel of markers for the identification of these cells in the normal and neoplastic mammary gland and lack of investigation of immunohistochemical changes from an epithelial to a mesenchymal phenotype, was the aim of a parallel research. While investigating mammary tumours, it was noticed that only few studies had focused on the expression of CD117. Therefore, it was decided to further deepen the knowledge in order to characterize the immunohistochemical staining of CD117 in normal and neoplastic mammary tissue of the dog, and to correlate CD117 immunohistochemical results with mammary histotype, histological stage (invasiveness), Ki67 index and patient survival time.
Resumo:
Epstein-Barr virus (EBV) establishes a lifelong asymptomatic infection by replicating its chromatinized genome, called episome, together with the host genome. EBV exhibits different latency-associated transcriptional repertoires that mirror its three-dimensional structures of the genome. CTCF, Cohesin and PARP1 are involved in maintaining viral latency and establishing episome architecture. Epstein-Barr virus-associated gastric cancer (EBVaGC) represents almost 10% of all gastric cancers globally. EBVaGC exhibit an intermediate viral transcription profile known as "Latency II", expressing specific viral genes and non-coding RNAs. In this study, we investigated the impact of PARP1 inhibition on CTCF/Cohesin binding in Type II latency. We observed a destabilization of the binding of both factors, leading to a disrupted three-dimensional architecture of the episomes and consequently, an altered viral gene expression. Despite sharing the same CTCF binding profile, Type I, II, and III latencies display different 3D episomal structures that correlate with variations in viral gene expression. Additionally, our analysis of H3K27ac-enriched chromatin interactions revealed differences between Type II latency episomes and a link to cellular transformation through docking of the EBV episomes at specific sites of the Human genome, thus promoting oncogene expression. Overall, this work provides insights into the role of PARP1 in maintaining active latency and novel mechanisms of EBV-induced cellular transformation.