2 resultados para EPIDERMIS
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Anhidrotic Ectodermal Dysplasia (EDA), is the most frequent form among Ectodermal Dysplasias, hereditary genetic disorders causing ectodermal appendages defective development. Indeed, EDA is characterized by defective formation of hair follicles, sweat glands and teeth both in human patients and animals. EDA, the gene mutated in Anhidrotic Ectodermal Dysplasia, encodes Ectodysplasin, a TNF family member that activates NF-kB mediated transcription. This disease can occur with mutations in other EDA-NF-kB pathway members, as EDA receptor, EDAR and its adapter, EDARADD. Moreover, mutations in TRAF6, NEMO, IKB and NF-kBs genes are responsible for Immunodeficiency associated EDA (EDA-ID). Several molecules, as SHH, WNT/DKK, BMP and LTβ, have already been reported to be EDA pathway regulators or effectors although the knowledge of the full spectrum of EDA targets remains incomplete. During the first part of the research project a gene expression analysis was performed in primary keratinocytes from Wild-type and Tabby (EDA model mouse) mice to identify novel EDA target genes. Earlier expression profiling at various developmental time points in Tabby and Wild-type mouse skin reported genes differentially expressed in the two samples and, to increase the resolution to find genes whose expression may be restricted to epidermal cells, the study was extended to primary keratinocyte cultures established from E19 Wild-type and Tabby skin. Using microarrays bearing 44,000 gene probes, we found 385 “preliminary candidate” genes whose expression was significantly affected by Eda defect. By comparing expression profiles to those from Eda-A1 (where Eda-A1 is highly expressed) transgenic skin, we restricted the list to 38 “candidate EDA targets”, 14 of which were already known to be expressed in hair follicles or epidermis. This work confirmed expression changes for 3 selected genes, Tbx1, Bmp7, and Jag1, both in primary keratinocytes and in Wild-type and Tabby whole skin, by Q-PCR and Western blotting analyses. Thus, this study detected novel candidate pathways downstream of EDA. In the second part of the research project, plasmid constructs were produced and analyzed to create a transgenic mouse model for Immunodeficiency associated EDA disease (XL-EDA-ID). In particular, plasmids containing mouse Wild-type and mutated Nemo cDNA under K-17 epidermis-specific promoter control and a Flag tag, were prepared, on the way to confine transgene expression to mice epidermis and to determine EDA phenotype without immunodeficiency for a comparison to Tabby model phenotype. EDA-ID mutations reported in patients and selected for this study are: C417R (C409R in mouse), causing Zinc Finger protein domain destabilization and A288G (A282G in mouse) affecting oligomerization of the protein. Moreover, the ex-novo mutation, ZnF, C-terminal Zinc Finger domain deletion, was tested. Thus, the constructs were analyzed by transient transfection, Western blotting and luciferase assays techniques, detecting Nemo Wild-type and mutant protein products and residue NF-kB activity in presence of mutants, after TNF stimulation. In particular, MEF_Nemo-/- cell line was used to monitor NF-kB activity without endogenous Nemo gene. Results show reduced NF-kB activity in presence of mutated Nemo forms compared to Wild-type: 81% for A282G (A288G in human); 24% for C409R (C417R in human); 15% for ZnF. C409R mutation (C417R in human), reported in 6 EDA-ID human patients, was selected to prepare transgenic model mouse. Mice (white, FVP) born following K17-promoter-Flag-Nemo_C409R plasmid region pronuclear injection, were analyzed for the transgene presence in the genotype and a preliminar examination of their phenotype was performed. In particular, one mouse showed considerable coat defects if compared to Wild-type mice. This preliminar analysis suggests a possible influence of Nemo mutant over-expression in epidermis without immunodeficiency. Still, more microscopic studies to analyze hair subtypes, Guard, Awl and Zigzag (usually alterated inTabby mouse model), Immunohistochemistry experiments to detect epidermis restricted Nemo expression and sweat glands analysis, will follow. This and other transgene positive mice will be crossed with black mice C57BL6 to obtain at least two indipendent agouti lines to analyze. Theses mice will be used in EDA target genes detection through microarrays. Following, plasmid constructs containing other Nemo mutant forms (A282G and ZnF) might be studied by the same experimental approaches to prepare more transgenic model mice to compare to Nemo_C409R and Tabby mouse models.
Resumo:
Dystrophin is a subsarcolemmal protein critical for the integrity of muscle fibers by linking the actin cytoskeleton to the extracellular matrix via the dystroglycan complex. It is reported that dystroglycans are also localized in the skin, at dermal-epidermal junction. Here we show that epidermal melanocytes express dystrophin at the interface with the basement membrane. The full-length muscle isoform mDp427 was clearly detectable in epidermis and in melanocyte cultures as assessed by RNA and western blot analysis. Dystrophin was absent in Duchenne Muscular Dystrophy (DMD) patients melanocytes, and the ultrastructural analysis revealed mitochondrial alterations, similar to those occurring in myoblasts from the same patients. Interestingly, mitochondrial dysfunction of DMD melanocytes reflected the alterations identified in dystrophin-deficient muscle cells. In fact, mitochondria of melanocytes from DMD patients accumulated tetramethylrhodamine methyl ester but, on the contrary of control donor, mitochondria of DMD patients readily depolarized upon the addition of oligomycin, suggesting either that they are maintaining the membrane potential at the expense of glycolytic ATP, or that they are affected by a latent dysfunction unmasked by inhibition of the ATP synthase. Melanocyte cultures can be easily obtained by conventional skin biopsies, less invasive procedure than muscular biopsy, so that they may represent an alternative cellular model to myoblast for studying and monitoring dystrophinopathies also in response to pharmacological treatments.