2 resultados para ENOS

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stem cells are one of the most fascinating areas of biology today, and since the discover of an adult population, i.e., adult Stem Cells (aSCs), they have generated much interest especially for their application potential as a source for cell based regenerative medicine and tissue engineering. aSCs have been found in different tissues including bone marrow, skin, intestine, central nervous system, where they reside in a special microenviroment termed “niche” which regulate the homeostasis and repair of adult tissues. The arterial wall of the blood vessels is much more plastic than ever before believed. Several animal studies have demonstrated the presence of cells with stem cell characteristics within the adult vessels. Recently, it has been also hypothesized the presence of a “vasculogenic zone” in human adult arteries in which a complete hierarchy of resident stem cells and progenitors could be niched during lifetime. Accordingly, it can be speculated that in that location resident mesenchymal stem cells (MSCs) with the ability to differentiate in smooth muscle cells, surrounding pericytes and fibroblasts are present. The present research was aimed at identifying in situ and isolating MSCs from thoracic aortas of young and healthy heart-beating multiorgan donors. Immunohistochemistry performed on fresh and frozen human thoracic aortas demonstrated the presence of the vasculogenic zone between the media and the adventitial layers in which a well preserved plexus of CD34 positive cells was found. These cells expressed intensely HLA-I antigens both before and after cryopreservation and after 4 days of organ cultures remained viable. Following these preliminary results, we succeeded to isolate mesenchymal cells from multi-organ thoracic aortas using a mechanical and enzymatic combined procedure. Cells had phenotypic characteristics of MSC i.e., CD44+, CD90+, CD105+, CD166+, CD34low, CD45- and revealed a transcript expression of stem cell markers, e.g., OCT4, c-kit, BCRP-1, IL6 and BMI-1. As previously documented using bone marrow derived MSCs, resident vascular wall MSCs were able to differentiate in vitro into endothelial cells in the presence of low-serum supplemented with VEGF-A (50 ng/ml) for 7 days. Under the condition described above, cultured cells showed an increased expression of KDR and eNOS, down-regulation of the CD133 transcript, vWF expression as documented by flow cytometry, immunofluorescence, qPCR and TEM. Moreover, matrigel assay revealed that VEGF induced cells were able to form capillary-like structures within 6 hours of seeding. In summary, these findings indicate that thoracic aortas from heart-beating, multi-organ donors are highly suitable for obtaining MSCs with the ability to differentiate in vitro into endothelial cells. Even though their differentiating potential remains to be fully established, it is believed that their angiogenic ability could be a useful property for allogenic use. These cells can be expanded rapidly, providing numbers which are adequate for therapeutic neovascularization; furthermore they can be cryostored in appropriate cell banking facilities for later use.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the recent years it is emerged that peripheral arterial disease (PAD) has become a growing health problem in Western countries. This is a progressive manifestation of atherothrombotic vascular disease, which results into the narrowing of the blood vessels of the lower limbs and, as final consequence, in critical leg ischemia. PAD often occurs along with other cardiovascular risk factors, including diabetes mellitus (DM), low-grade inflammation, hypertension, and lipid disorders. Patients with DM have an increased risk of developing PAD, and that risk increases with the duration of DM. Moreover, there is a growing population of patients identified with insulin resistance (IR), impaired glucose tolerance, and obesity, a pathological condition known as “metabolic syndrome”, which presents increased cardiovascular risk. Atherosclerosis is the earliest symptom of PAD and is a dynamic and progressive disease arising from the combination of endothelial dysfunction and inflammation. Endothelial dysfunction is a broad term that implies diminished production or availability of nitric oxide (NO) and/or an imbalance in the relative contribution of endothelium-derived relaxing factors. The secretion of these agents is considerably reduced in association with the major risks of atherosclerosis, especially hyperglycaemia and diabetes, and a reduced vascular repair has been observed in response to wound healing and to ischemia. Neovascularization does not only rely on the proliferation of local endothelial cells, but also involves bone marrow-derived stem cells, referred to as endothelial progenitor cells (EPCs), since they exhibit endothelial surface markers and properties. They can promote postnatal vasculogenesis by homing to, differentiating into an endothelial phenotype, proliferating and incorporating into new vessels. Consequently, EPCs are critical to endothelium maintenance and repair and their dysfunction contributes to vascular disease. The aim of this study has been the characterization of EPCs from healthy peripheral blood, in terms of proliferation, differentiation and function. Given the importance of NO in neovascularization and homing process, it has been investigated the expression of NO synthase (NOS) isoforms, eNOS, nNOS and iNOS, and the effects of their inhibition on EPC function. Moreover, it has been examined the expression of NADPH oxidase (Nox) isoforms which are the principal source of ROS in the cell. In fact, a number of evidences showed the correlation between ROS and NO metabolism, since oxidative stress causes NOS inactivation via enzyme uncoupling. In particular, it has been studied the expression of Nox2 and Nox4, constitutively expressed in endothelium, and Nox1. The second part of this research was focused on the study of EPCs under pathological conditions. Firstly, EPCs isolated from healthy subject were cultured in a hyperglycaemic medium, in order to evaluate the effects of high glucose concentration on EPCs. Secondly, EPCs were isolated from the peripheral blood of patients affected with PAD, both diabetic or not, and it was assessed their capacity to proliferate, differentiate, and to participate to neovasculogenesis. Furthermore, it was investigated the expression of NOS and Nox in these cells. Mononuclear cells isolated from peripheral blood of healthy patients, if cultured under differentiating conditions, differentiate into EPCs. These cells are not able to form capillary-like structures ex novo, but participate to vasculogenesis by incorporation into the new vessels formed by mature endothelial cells, such as HUVECs. With respect to NOS expression, these cells have high levels of iNOS, the inducible isoform of NOS, 3-4 fold higher than in HUVECs. While the endothelial isoform, eNOS, is poorly expressed in EPCs. The higher iNOS expression could be a form of compensation of lower eNOS levels. Under hyperglycaemic conditions, both iNOS and eNOS expression are enhanced compared to control EPCs, as resulted from experimental studies in animal models. In patients affected with PAD, the EPCs may act in different ways. Non-diabetic patients and diabetic patients with a higher vascular damage, evidenced by a higher number of circulating endothelial cells (CECs), show a reduced proliferation and ability to participate to vasculogenesis. On the other hand, diabetic patients with lower CEC number have proliferative and vasculogenic capacity more similar to healthy EPCs. eNOS levels in both patient types are equivalent to those of control, while iNOS expression is enhanced. Interestingly, nNOS is not detected in diabetic patients, analogously to other cell types in diabetics, which show a reduced or no nNOS expression. Concerning Nox expression, EPCs present higher levels of both Nox1 and Nox2, in comparison with HUVECs, while Nox4 is poorly expressed, probably because of uncompleted differentiation into an endothelial phenotype. Nox1 is more expressed in PAD patients, diabetic or not, than in controls, suggesting an increased ROS production. Nox2, instead, is lower in patients than in controls. Being Nox2 involved in cellular response to VEGF, its reduced expression can be referable to impaired vasculogenic potential of PAD patients.