17 resultados para ENGINES
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Recent developments in piston engine technology have increased performance in a very significant way. Diesel turbocharged/turbo compound engines, fuelled by jet fuels, have great performances. The focal point of this thesis is the transformation of the FIAT 1900 jtd diesel common rail engine for the installation on general aviation aircrafts like the CESSNA 172. All considerations about the diesel engine are supported by the studies that have taken place in the laboratories of the II Faculty of Engineering in Forlì. This work, mostly experimental, concerns the transformation of the automotive FIAT 1900 jtd – 4 cylinders – turbocharged – diesel common rail into an aircraft engine. The design philosophy of the aluminium alloy basement of the spark ignition engine have been transferred to the diesel version while the pistons and the head of the FIAT 1900 jtd are kept in the aircraft engine. Different solutions have been examined in this work. A first V 90° cylinders version that can develop up to 300 CV and whose weight is 30 kg, without auxiliaries and turbocharging group. The second version is a development of e original version of the diesel 1900 cc engine with an optimized crankshaft, that employ a special steel, 300M, and that is verified for the aircraft requirements. Another version with an augmented stroke and with a total displacement of 2500 cc has been examined; the result is a 30% engine heavier. The last version proposed is a 1600 cc diesel engine that work at 5000 rpm, with a reduced stroke and capable of more than 200 CV; it was inspired to the Yamaha R1 motorcycle engine. The diesel aircraft engine design keeps the bore of 82 mm, while the stroke is reduced to 64.6 mm, so the engine size is reduced along with weight. The basement weight, in GD AlSi 9 MgMn alloy, is 8,5 kg. Crankshaft, rods and accessories have been redesigned to comply to aircraft standards. The result is that the overall size is increased of only the 8% when referred to the Yamaha engine spark ignition version, while the basement weight increases of 53 %, even if the bore of the diesel version is 11% lager. The original FIAT 1900 jtd piston has been slightly modified with the combustion chamber reworked to the compression ratio of 15:1. The material adopted for the piston is the aluminium alloy A390.0-T5 commonly used in the automotive field. The piston weight is 0,5 kg for the diesel engine. The crankshaft is verified to torsional vibrations according to the Lloyd register of shipping requirements. The 300M special steel crankshaft total weight is of 14,5 kg. The result reached is a very small and light engine that may be certified for general aviation: the engine weight, without the supercharger, air inlet assembly, auxiliary generators and high pressure body, is 44,7 kg and the total engine weight, with enlightened HP pump body and the titanium alloy turbocharger is less than 100 kg, the total displacement is 1365 cm3 and the estimated output power is 220 CV. The direct conversion of automotive piston engine to aircrafts pays too huge weight penalties. In fact the main aircraft requirement is to optimize the power to weight ratio in order to obtain compact and fast engines for aeronautical use: this 1600 common rail diesel engine version demonstrates that these results can be reached.
Resumo:
Providing support for multimedia applications on low-power mobile devices remains a significant research challenge. This is primarily due to two reasons: • Portable mobile devices have modest sizes and weights, and therefore inadequate resources, low CPU processing power, reduced display capabilities, limited memory and battery lifetimes as compared to desktop and laptop systems. • On the other hand, multimedia applications tend to have distinctive QoS and processing requirementswhichmake themextremely resource-demanding. This innate conflict introduces key research challenges in the design of multimedia applications and device-level power optimization. Energy efficiency in this kind of platforms can be achieved only via a synergistic hardware and software approach. In fact, while System-on-Chips are more and more programmable thus providing functional flexibility, hardwareonly power reduction techniques cannot maintain consumption under acceptable bounds. It is well understood both in research and industry that system configuration andmanagement cannot be controlled efficiently only relying on low-level firmware and hardware drivers. In fact, at this level there is lack of information about user application activity and consequently about the impact of power management decision on QoS. Even though operating system support and integration is a requirement for effective performance and energy management, more effective and QoSsensitive power management is possible if power awareness and hardware configuration control strategies are tightly integratedwith domain-specificmiddleware services. The main objective of this PhD research has been the exploration and the integration of amiddleware-centric energymanagement with applications and operating-system. We choose to focus on the CPU-memory and the video subsystems, since they are the most power-hungry components of an embedded system. A second main objective has been the definition and implementation of software facilities (like toolkits, API, and run-time engines) in order to improve programmability and performance efficiency of such platforms. Enhancing energy efficiency and programmability ofmodernMulti-Processor System-on-Chips (MPSoCs) Consumer applications are characterized by tight time-to-market constraints and extreme cost sensitivity. The software that runs on modern embedded systems must be high performance, real time, and even more important low power. Although much progress has been made on these problems, much remains to be done. Multi-processor System-on-Chip (MPSoC) are increasingly popular platforms for high performance embedded applications. This leads to interesting challenges in software development since efficient software development is a major issue for MPSoc designers. An important step in deploying applications on multiprocessors is to allocate and schedule concurrent tasks to the processing and communication resources of the platform. The problem of allocating and scheduling precedenceconstrained tasks on processors in a distributed real-time system is NP-hard. There is a clear need for deployment technology that addresses thesemulti processing issues. This problem can be tackled by means of specific middleware which takes care of allocating and scheduling tasks on the different processing elements and which tries also to optimize the power consumption of the entire multiprocessor platform. This dissertation is an attempt to develop insight into efficient, flexible and optimalmethods for allocating and scheduling concurrent applications tomultiprocessor architectures. It is a well-known problem in literature: this kind of optimization problems are very complex even in much simplified variants, therefore most authors propose simplified models and heuristic approaches to solve it in reasonable time. Model simplification is often achieved by abstracting away platform implementation ”details”. As a result, optimization problems become more tractable, even reaching polynomial time complexity. Unfortunately, this approach creates an abstraction gap between the optimization model and the real HW-SW platform. The main issue with heuristic or, more in general, with incomplete search is that they introduce an optimality gap of unknown size. They provide very limited or no information on the distance between the best computed solution and the optimal one. The goal of this work is to address both abstraction and optimality gaps, formulating accurate models which accounts for a number of ”non-idealities” in real-life hardware platforms, developing novel mapping algorithms that deterministically find optimal solutions, and implementing software infrastructures required by developers to deploy applications for the targetMPSoC platforms. Energy Efficient LCDBacklightAutoregulation on Real-LifeMultimediaAp- plication Processor Despite the ever increasing advances in Liquid Crystal Display’s (LCD) technology, their power consumption is still one of the major limitations to the battery life of mobile appliances such as smart phones, portable media players, gaming and navigation devices. There is a clear trend towards the increase of LCD size to exploit the multimedia capabilities of portable devices that can receive and render high definition video and pictures. Multimedia applications running on these devices require LCD screen sizes of 2.2 to 3.5 inches andmore to display video sequences and pictures with the required quality. LCD power consumption is dependent on the backlight and pixel matrix driving circuits and is typically proportional to the panel area. As a result, the contribution is also likely to be considerable in future mobile appliances. To address this issue, companies are proposing low power technologies suitable for mobile applications supporting low power states and image control techniques. On the research side, several power saving schemes and algorithms can be found in literature. Some of them exploit software-only techniques to change the image content to reduce the power associated with the crystal polarization, some others are aimed at decreasing the backlight level while compensating the luminance reduction by compensating the user perceived quality degradation using pixel-by-pixel image processing algorithms. The major limitation of these techniques is that they rely on the CPU to perform pixel-based manipulations and their impact on CPU utilization and power consumption has not been assessed. This PhDdissertation shows an alternative approach that exploits in a smart and efficient way the hardware image processing unit almost integrated in every current multimedia application processors to implement a hardware assisted image compensation that allows dynamic scaling of the backlight with a negligible impact on QoS. The proposed approach overcomes CPU-intensive techniques by saving system power without requiring either a dedicated display technology or hardware modification. Thesis Overview The remainder of the thesis is organized as follows. The first part is focused on enhancing energy efficiency and programmability of modern Multi-Processor System-on-Chips (MPSoCs). Chapter 2 gives an overview about architectural trends in embedded systems, illustrating the principal features of new technologies and the key challenges still open. Chapter 3 presents a QoS-driven methodology for optimal allocation and frequency selection for MPSoCs. The methodology is based on functional simulation and full system power estimation. Chapter 4 targets allocation and scheduling of pipelined stream-oriented applications on top of distributed memory architectures with messaging support. We tackled the complexity of the problem by means of decomposition and no-good generation, and prove the increased computational efficiency of this approach with respect to traditional ones. Chapter 5 presents a cooperative framework to solve the allocation, scheduling and voltage/frequency selection problem to optimality for energyefficient MPSoCs, while in Chapter 6 applications with conditional task graph are taken into account. Finally Chapter 7 proposes a complete framework, called Cellflow, to help programmers in efficient software implementation on a real architecture, the Cell Broadband Engine processor. The second part is focused on energy efficient software techniques for LCD displays. Chapter 8 gives an overview about portable device display technologies, illustrating the principal features of LCD video systems and the key challenges still open. Chapter 9 shows several energy efficient software techniques present in literature, while Chapter 10 illustrates in details our method for saving significant power in an LCD panel. Finally, conclusions are drawn, reporting the main research contributions that have been discussed throughout this dissertation.
Resumo:
The miniaturization race in the hardware industry aiming at continuous increasing of transistor density on a die does not bring respective application performance improvements any more. One of the most promising alternatives is to exploit a heterogeneous nature of common applications in hardware. Supported by reconfigurable computation, which has already proved its efficiency in accelerating data intensive applications, this concept promises a breakthrough in contemporary technology development. Memory organization in such heterogeneous reconfigurable architectures becomes very critical. Two primary aspects introduce a sophisticated trade-off. On the one hand, a memory subsystem should provide well organized distributed data structure and guarantee the required data bandwidth. On the other hand, it should hide the heterogeneous hardware structure from the end-user, in order to support feasible high-level programmability of the system. This thesis work explores the heterogeneous reconfigurable hardware architectures and presents possible solutions to cope the problem of memory organization and data structure. By the example of the MORPHEUS heterogeneous platform, the discussion follows the complete design cycle, starting from decision making and justification, until hardware realization. Particular emphasis is made on the methods to support high system performance, meet application requirements, and provide a user-friendly programmer interface. As a result, the research introduces a complete heterogeneous platform enhanced with a hierarchical memory organization, which copes with its task by means of separating computation from communication, providing reconfigurable engines with computation and configuration data, and unification of heterogeneous computational devices using local storage buffers. It is distinguished from the related solutions by distributed data-flow organization, specifically engineered mechanisms to operate with data on local domains, particular communication infrastructure based on Network-on-Chip, and thorough methods to prevent computation and communication stalls. In addition, a novel advanced technique to accelerate memory access was developed and implemented.
Resumo:
In such territories where food production is mostly scattered in several small / medium size or even domestic farms, a lot of heterogeneous residues are produced yearly, since farmers usually carry out different activities in their properties. The amount and composition of farm residues, therefore, widely change during year, according to the single production process periodically achieved. Coupling high efficiency micro-cogeneration energy units with easy handling biomass conversion equipments, suitable to treat different materials, would provide many important advantages to the farmers and to the community as well, so that the increase in feedstock flexibility of gasification units is nowadays seen as a further paramount step towards their wide spreading in rural areas and as a real necessity for their utilization at small scale. Two main research topics were thought to be of main concern at this purpose, and they were therefore discussed in this work: the investigation of fuels properties impact on gasification process development and the technical feasibility of small scale gasification units integration with cogeneration systems. According to these two main aspects, the present work was thus divided in two main parts. The first one is focused on the biomass gasification process, that was investigated in its theoretical aspects and then analytically modelled in order to simulate thermo-chemical conversion of different biomass fuels, such as wood (park waste wood and softwood), wheat straw, sewage sludge and refuse derived fuels. The main idea is to correlate the results of reactor design procedures with the physical properties of biomasses and the corresponding working conditions of gasifiers (temperature profile, above all), in order to point out the main differences which prevent the use of the same conversion unit for different materials. At this scope, a gasification kinetic free model was initially developed in Excel sheets, considering different values of air to biomass ratio and the downdraft gasification technology as particular examined application. The differences in syngas production and working conditions (process temperatures, above all) among the considered fuels were tried to be connected to some biomass properties, such elementary composition, ash and water contents. The novelty of this analytical approach was the use of kinetic constants ratio in order to determine oxygen distribution among the different oxidation reactions (regarding volatile matter only) while equilibrium of water gas shift reaction was considered in gasification zone, by which the energy and mass balances involved in the process algorithm were linked together, as well. Moreover, the main advantage of this analytical tool is the easiness by which the input data corresponding to the particular biomass materials can be inserted into the model, so that a rapid evaluation on their own thermo-chemical conversion properties is possible to be obtained, mainly based on their chemical composition A good conformity of the model results with the other literature and experimental data was detected for almost all the considered materials (except for refuse derived fuels, because of their unfitting chemical composition with the model assumptions). Successively, a dimensioning procedure for open core downdraft gasifiers was set up, by the analysis on the fundamental thermo-physical and thermo-chemical mechanisms which are supposed to regulate the main solid conversion steps involved in the gasification process. Gasification units were schematically subdivided in four reaction zones, respectively corresponding to biomass heating, solids drying, pyrolysis and char gasification processes, and the time required for the full development of each of these steps was correlated to the kinetics rates (for pyrolysis and char gasification processes only) and to the heat and mass transfer phenomena from gas to solid phase. On the basis of this analysis and according to the kinetic free model results and biomass physical properties (particles size, above all) it was achieved that for all the considered materials char gasification step is kinetically limited and therefore temperature is the main working parameter controlling this step. Solids drying is mainly regulated by heat transfer from bulk gas to the inner layers of particles and the corresponding time especially depends on particle size. Biomass heating is almost totally achieved by the radiative heat transfer from the hot walls of reactor to the bed of material. For pyrolysis, instead, working temperature, particles size and the same nature of biomass (through its own pyrolysis heat) have all comparable weights on the process development, so that the corresponding time can be differently depending on one of these factors according to the particular fuel is gasified and the particular conditions are established inside the gasifier. The same analysis also led to the estimation of reaction zone volumes for each biomass fuel, so as a comparison among the dimensions of the differently fed gasification units was finally accomplished. Each biomass material showed a different volumes distribution, so that any dimensioned gasification unit does not seem to be suitable for more than one biomass species. Nevertheless, since reactors diameters were found out quite similar for all the examined materials, it could be envisaged to design a single units for all of them by adopting the largest diameter and by combining together the maximum heights of each reaction zone, as they were calculated for the different biomasses. A total height of gasifier as around 2400mm would be obtained in this case. Besides, by arranging air injecting nozzles at different levels along the reactor, gasification zone could be properly set up according to the particular material is in turn gasified. Finally, since gasification and pyrolysis times were found to considerably change according to even short temperature variations, it could be also envisaged to regulate air feeding rate for each gasified material (which process temperatures depend on), so as the available reactor volumes would be suitable for the complete development of solid conversion in each case, without even changing fluid dynamics behaviour of the unit as well as air/biomass ratio in noticeable measure. The second part of this work dealt with the gas cleaning systems to be adopted downstream the gasifiers in order to run high efficiency CHP units (i.e. internal engines and micro-turbines). Especially in the case multi–fuel gasifiers are assumed to be used, weightier gas cleaning lines need to be envisaged in order to reach the standard gas quality degree required to fuel cogeneration units. Indeed, as the more heterogeneous feed to the gasification unit, several contaminant species can simultaneously be present in the exit gas stream and, as a consequence, suitable gas cleaning systems have to be designed. In this work, an overall study on gas cleaning lines assessment is carried out. Differently from the other research efforts carried out in the same field, the main scope is to define general arrangements for gas cleaning lines suitable to remove several contaminants from the gas stream, independently on the feedstock material and the energy plant size The gas contaminant species taken into account in this analysis were: particulate, tars, sulphur (in H2S form), alkali metals, nitrogen (in NH3 form) and acid gases (in HCl form). For each of these species, alternative cleaning devices were designed according to three different plant sizes, respectively corresponding with 8Nm3/h, 125Nm3/h and 350Nm3/h gas flows. Their performances were examined on the basis of their optimal working conditions (efficiency, temperature and pressure drops, above all) and their own consumption of energy and materials. Successively, the designed units were combined together in different overall gas cleaning line arrangements, paths, by following some technical constraints which were mainly determined from the same performance analysis on the cleaning units and from the presumable synergic effects by contaminants on the right working of some of them (filters clogging, catalysts deactivation, etc.). One of the main issues to be stated in paths design accomplishment was the tars removal from the gas stream, preventing filters plugging and/or line pipes clogging At this scope, a catalytic tars cracking unit was envisaged as the only solution to be adopted, and, therefore, a catalytic material which is able to work at relatively low temperatures was chosen. Nevertheless, a rapid drop in tars cracking efficiency was also estimated for this same material, so that an high frequency of catalysts regeneration and a consequent relevant air consumption for this operation were calculated in all of the cases. Other difficulties had to be overcome in the abatement of alkali metals, which condense at temperatures lower than tars, but they also need to be removed in the first sections of gas cleaning line in order to avoid corrosion of materials. In this case a dry scrubber technology was envisaged, by using the same fine particles filter units and by choosing for them corrosion resistant materials, like ceramic ones. Besides these two solutions which seem to be unavoidable in gas cleaning line design, high temperature gas cleaning lines were not possible to be achieved for the two larger plant sizes, as well. Indeed, as the use of temperature control devices was precluded in the adopted design procedure, ammonia partial oxidation units (as the only considered methods for the abatement of ammonia at high temperature) were not suitable for the large scale units, because of the high increase of reactors temperature by the exothermic reactions involved in the process. In spite of these limitations, yet, overall arrangements for each considered plant size were finally designed, so that the possibility to clean the gas up to the required standard degree was technically demonstrated, even in the case several contaminants are simultaneously present in the gas stream. Moreover, all the possible paths defined for the different plant sizes were compared each others on the basis of some defined operational parameters, among which total pressure drops, total energy losses, number of units and secondary materials consumption. On the basis of this analysis, dry gas cleaning methods proved preferable to the ones including water scrubber technology in al of the cases, especially because of the high water consumption provided by water scrubber units in ammonia adsorption process. This result is yet connected to the possibility to use activated carbon units for ammonia removal and Nahcolite adsorber for chloride acid. The very high efficiency of this latter material is also remarkable. Finally, as an estimation of the overall energy loss pertaining the gas cleaning process, the total enthalpy losses estimated for the three plant sizes were compared with the respective gas streams energy contents, these latter obtained on the basis of low heating value of gas only. This overall study on gas cleaning systems is thus proposed as an analytical tool by which different gas cleaning line configurations can be evaluated, according to the particular practical application they are adopted for and the size of cogeneration unit they are connected to.
Resumo:
The aim of this Doctoral Thesis is to develop a genetic algorithm based optimization methods to find the best conceptual design architecture of an aero-piston-engine, for given design specifications. Nowadays, the conceptual design of turbine airplanes starts with the aircraft specifications, then the most suited turbofan or turbo propeller for the specific application is chosen. In the aeronautical piston engines field, which has been dormant for several decades, as interest shifted towards turboaircraft, new materials with increased performance and properties have opened new possibilities for development. Moreover, the engine’s modularity given by the cylinder unit, makes it possible to design a specific engine for a given application. In many real engineering problems the amount of design variables may be very high, characterized by several non-linearities needed to describe the behaviour of the phenomena. In this case the objective function has many local extremes, but the designer is usually interested in the global one. The stochastic and the evolutionary optimization techniques, such as the genetic algorithms method, may offer reliable solutions to the design problems, within acceptable computational time. The optimization algorithm developed here can be employed in the first phase of the preliminary project of an aeronautical piston engine design. It’s a mono-objective genetic algorithm, which, starting from the given design specifications, finds the engine propulsive system configuration which possesses minimum mass while satisfying the geometrical, structural and performance constraints. The algorithm reads the project specifications as input data, namely the maximum values of crankshaft and propeller shaft speed and the maximal pressure value in the combustion chamber. The design variables bounds, that describe the solution domain from the geometrical point of view, are introduced too. In the Matlab® Optimization environment the objective function to be minimized is defined as the sum of the masses of the engine propulsive components. Each individual that is generated by the genetic algorithm is the assembly of the flywheel, the vibration damper and so many pistons, connecting rods, cranks, as the number of the cylinders. The fitness is evaluated for each individual of the population, then the rules of the genetic operators are applied, such as reproduction, mutation, selection, crossover. In the reproduction step the elitist method is applied, in order to save the fittest individuals from a contingent mutation and recombination disruption, making it undamaged survive until the next generation. Finally, as the best individual is found, the optimal dimensions values of the components are saved to an Excel® file, in order to build a CAD-automatic-3D-model for each component of the propulsive system, having a direct pre-visualization of the final product, still in the engine’s preliminary project design phase. With the purpose of showing the performance of the algorithm and validating this optimization method, an actual engine is taken, as a case study: it’s the 1900 JTD Fiat Avio, 4 cylinders, 4T, Diesel. Many verifications are made on the mechanical components of the engine, in order to test their feasibility and to decide their survival through generations. A system of inequalities is used to describe the non-linear relations between the design variables, and is used for components checking for static and dynamic loads configurations. The design variables geometrical boundaries are taken from actual engines data and similar design cases. Among the many simulations run for algorithm testing, twelve of them have been chosen as representative of the distribution of the individuals. Then, as an example, for each simulation, the corresponding 3D models of the crankshaft and the connecting rod, have been automatically built. In spite of morphological differences among the component the mass is almost the same. The results show a significant mass reduction (almost 20% for the crankshaft) in comparison to the original configuration, and an acceptable robustness of the method have been shown. The algorithm here developed is shown to be a valid method for an aeronautical-piston-engine preliminary project design optimization. In particular the procedure is able to analyze quite a wide range of design solutions, rejecting the ones that cannot fulfill the feasibility design specifications. This optimization algorithm could increase the aeronautical-piston-engine development, speeding up the production rate and joining modern computation performances and technological awareness to the long lasting traditional design experiences.
Resumo:
This work describes the development of a simulation tool which allows the simulation of the Internal Combustion Engine (ICE), the transmission and the vehicle dynamics. It is a control oriented simulation tool, designed in order to perform both off-line (Software In the Loop) and on-line (Hardware In the Loop) simulation. In the first case the simulation tool can be used in order to optimize Engine Control Unit strategies (as far as regard, for example, the fuel consumption or the performance of the engine), while in the second case it can be used in order to test the control system. In recent years the use of HIL simulations has proved to be very useful in developing and testing of control systems. Hardware In the Loop simulation is a technology where the actual vehicles, engines or other components are replaced by a real time simulation, based on a mathematical model and running in a real time processor. The processor reads ECU (Engine Control Unit) output signals which would normally feed the actuators and, by using mathematical models, provides the signals which would be produced by the actual sensors. The simulation tool, fully designed within Simulink, includes the possibility to simulate the only engine, the transmission and vehicle dynamics and the engine along with the vehicle and transmission dynamics, allowing in this case to evaluate the performance and the operating conditions of the Internal Combustion Engine, once it is installed on a given vehicle. Furthermore the simulation tool includes different level of complexity, since it is possible to use, for example, either a zero-dimensional or a one-dimensional model of the intake system (in this case only for off-line application, because of the higher computational effort). Given these preliminary remarks, an important goal of this work is the development of a simulation environment that can be easily adapted to different engine types (single- or multi-cylinder, four-stroke or two-stroke, diesel or gasoline) and transmission architecture without reprogramming. Also, the same simulation tool can be rapidly configured both for off-line and real-time application. The Matlab-Simulink environment has been adopted to achieve such objectives, since its graphical programming interface allows building flexible and reconfigurable models, and real-time simulation is possible with standard, off-the-shelf software and hardware platforms (such as dSPACE systems).
Resumo:
Combustion control is one of the key factors to obtain better performances and lower pollutant emissions for diesel, spark ignition and HCCI engines. An algorithm that allows estimating, as an example, the mean indicated torque for each cylinder, could be easily used in control strategies, in order to carry out cylinders trade-off, control the cycle to cycle variation, or detect misfires. A tool that allows evaluating the 50% of Mass Fraction Burned (MFB50), or the net Cumulative Heat Release (CHRNET), or the ROHR peak value (Rate of Heat Release), could be used to optimize spark advance or to detect knock in gasoline engines and to optimize injection pattern in diesel engines. Modern management systems are based on the control of the mean indicated torque produced by the engine: they need a real or virtual sensor in order to compare the measured value with the target one. Many studies have been performed in order to obtain an accurate and reliable over time torque estimation. The aim of this PhD activity was to develop two different algorithms: the first one is based on the instantaneous engine speed fluctuations measurement. The speed signal is picked up directly from the sensor facing the toothed wheel mounted on the engine for other control purposes. The engine speed fluctuation amplitudes depend on the combustion and on the amount of torque delivered by each cylinder. The second algorithm processes in-cylinder pressure signals in the angular domain. In this case a crankshaft encoder is not necessary, because the angular reference can be obtained using a standard sensor wheel. The results obtained with these two methodologies are compared in order to evaluate which one is suitable for on board applications, depending on the accuracy required.
Resumo:
In gasoline Port Fuel Injection (PFI) and Direct Injection (GDI) internal combustion engines, the liquid fuel might be injected into a gaseous ambient in a superheated state, resulting in flash boiling of the fuel. The importance to investigate and predict such a process is due to the influence it has on the liquid fuel atomization and vaporization and thus on combustion, with direct implications on engine performances and exhaust gas emissions. The topic of the present PhD research involves the numerical analysis of the behaviour of the superheated fuel during the injection process, in high pressure injection systems like the ones equipping GDI engines. Particular emphasis is on the investigation of the effects of the fuel superheating degree on atomization dynamics and spray characteristics. The present work is a look at the flash evaporation and flash boiling modeling, from an engineering point of view, addressed to keep the complex physics involved as simple as possible, however capturing the main characteristics of a superheated fuel injection.
Resumo:
The field of "computer security" is often considered something in between Art and Science. This is partly due to the lack of widely agreed and standardized methodologies to evaluate the degree of the security of a system. This dissertation intends to contribute to this area by investigating the most common security testing strategies applied nowadays and by proposing an enhanced methodology that may be effectively applied to different threat scenarios with the same degree of effectiveness. Security testing methodologies are the first step towards standardized security evaluation processes and understanding of how the security threats evolve over time. This dissertation analyzes some of the most used identifying differences and commonalities, useful to compare them and assess their quality. The dissertation then proposes a new enhanced methodology built by keeping the best of every analyzed methodology. The designed methodology is tested over different systems with very effective results, which is the main evidence that it could really be applied in practical cases. Most of the dissertation discusses and proves how the presented testing methodology could be applied to such different systems and even to evade security measures by inverting goals and scopes. Real cases are often hard to find in methodology' documents, in contrary this dissertation wants to show real and practical cases offering technical details about how to apply it. Electronic voting systems are the first field test considered, and Pvote and Scantegrity are the two tested electronic voting systems. The usability and effectiveness of the designed methodology for electronic voting systems is proved thanks to this field cases analysis. Furthermore reputation and anti virus engines have also be analyzed with similar results. The dissertation concludes by presenting some general guidelines to build a coordination-based approach of electronic voting systems to improve the security without decreasing the system modularity.
Resumo:
The evolution of the electronics embedded applications forces electronics systems designers to match their ever increasing requirements. This evolution pushes the computational power of digital signal processing systems, as well as the energy required to accomplish the computations, due to the increasing mobility of such applications. Current approaches used to match these requirements relies on the adoption of application specific signal processors. Such kind of devices exploits powerful accelerators, which are able to match both performance and energy requirements. On the other hand, the too high specificity of such accelerators often results in a lack of flexibility which affects non-recurrent engineering costs, time to market, and market volumes too. The state of the art mainly proposes two solutions to overcome these issues with the ambition of delivering reasonable performance and energy efficiency: reconfigurable computing and multi-processors computing. All of these solutions benefits from the post-fabrication programmability, that definitively results in an increased flexibility. Nevertheless, the gap between these approaches and dedicated hardware is still too high for many application domains, especially when targeting the mobile world. In this scenario, flexible and energy efficient acceleration can be achieved by merging these two computational paradigms, in order to address all the above introduced constraints. This thesis focuses on the exploration of the design and application spectrum of reconfigurable computing, exploited as application specific accelerators for multi-processors systems on chip. More specifically, it introduces a reconfigurable digital signal processor featuring a heterogeneous set of reconfigurable engines, and a homogeneous multi-core system, exploiting three different flavours of reconfigurable and mask-programmable technologies as implementation platform for applications specific accelerators. In this work, the various trade-offs concerning the utilization multi-core platforms and the different configuration technologies are explored, characterizing the design space of the proposed approach in terms of programmability, performance, energy efficiency and manufacturing costs.
Resumo:
Oggetto della ricerca è lo studio del National Institute of Design (NID), progettato da Gautam Sarabhai e sua sorella Gira, ad Ahmedabad, assunta a paradigma del nuovo corso della politica che il Primo Ministro Nehru espresse nei primi decenni del governo postcoloniale. Obiettivo della tesi è di analizzare il fenomeno che unisce modernità e tradizione in architettura. La modernità indiana, infatti, nacque e si sviluppò con i caratteri di un Giano bifronte: da un lato, la politica del Primo Ministro Nehru favorì lo sviluppo dell’industria e della scienza; dall’altro, la visione di Gandhi mirava alla riscoperta del locale, delle tradizioni e dell’artigianato. Questi orientamenti influenzarono l’architettura postcoloniale. Negli anni ‘50 e ’60 Ahmedabad divenne la culla dell’architettura moderna indiana. Kanvinde, i Sarabhai, Correa, Doshi, Raje trovarono qui le condizioni per costruire la propria identità come progettisti e come intellettuali. I motori che resero possibile questo fermento furono principalmente due: una committenza di imprenditori illuminati, desiderosi di modernizzare la città; la presenza ad Ahmedabad, a partire dal 1951, dei maestri dell’architettura moderna, tra cui i più noti furono Le Corbusier e Kahn, invitati da quella stessa committenza, per la quale realizzarono edifici di notevole rilevanza. Ad Ahmedabad si confrontarono con forza entrambe le visioni dell’India moderna. Lo sforzo maggiore degli architetti indiani si espresse nel tentativo di conciliare i due aspetti, quelli che derivavano dalle influenze internazionali e quelli che provenivano dallo spirito della tradizione. Il progetto del NID è uno dei migliori esempi di questo esercizio di sintesi. Esso recupera nella composizione spaziale la lezione di Wright, Le Corbusier, Kahn, Eames ibridandola con elementi della tradizione indiana. Nell’uso sapiente della struttura modulare e a padiglione, della griglia ordinatrice a base quadrata, dell’integrazione costante fra spazi aperti, natura e architettura affiorano nell’edificio del NID echi di una cultura millenaria.
Resumo:
Modern Internal Combustion Engines are becoming increasingly complex in terms of their control systems and strategies. The growth of the algorithms’ complexity results in a rise of the number of on-board quantities for control purposes. In order to improve combustion efficiency and, simultaneously, limit the amount of pollutant emissions, the on-board evaluation of two quantities in particular has become essential; namely indicated torque produced by the engine and the angular position where 50% of fuel mass injected over an engine cycle is burned (MFB50). The above mentioned quantities can be evaluated through the measurement of in-cylinder pressure. Nonetheless, at the time being, the installation of in-cylinder pressure sensors on vehicles is extremely uncommon mainly because of measurement reliability and costs. This work illustrates a methodological approach for the estimation of indicated torque and MFB50 that is based on the engine speed fluctuation measurement. This methodology is compatible with the typical on-board application restraints. Moreover, it requires no additional costs since speed can be measured using the system already mounted on the vehicle, which is made of a magnetic pick-up faced to a toothed wheel. The estimation algorithm consists of two main parts: first, the evaluation of indicated torque fluctuation based on speed measurement and secondly, the evaluation of the mean value of the indicated torque (over an engine cycle) and MFB50 by using the relationship with the indicated torque harmonic and other engine quantities. The procedure has been successfully applied to an L4 turbocharged Diesel engine mounted on-board a vehicle.
Resumo:
La tesi ha ad oggetto lo studio e l’approfondimento delle forme di promozione commerciale presenti in Rete caratterizzate, più che da una normale evoluzione, da continue metamorfosi che ridefiniscono ogni giorno il concetto di pubblicità. L’intento è quello di analizzare il quadro giuridico applicabile alla pubblicità via Web, a fronte della varità di forme e di modalità che essa può assumere. Nel lavoro vengono passate in rassegna le caratteristiche che differenziano la pubblicità commerciale on-line rispetto a quella tradizionale; tra le quali, particolare rilievo assume la capacità d’istaurare una relazione – diretta e non mediata – tra impresa e consumatore. Nel prosieguo viene affrontato il problema dell’individuazione, stante il carattere a-territoriale della Rete, della legge applicabile al web advertising, per poi passare ad una ricognizione delle norme europee ed italiane in materia, senza trascurare quelle emanate in sede di autodisciplina. Ampio spazio è dedicato, infine, all’esame delle diverse e più recenti tecniche di promozione pubblicitaria, di cui sono messi in evidenza gli aspetti tecnico-informatici, imprescindibili ai fini di una corretta valutazione del tema giuridico. In particolare, vengono approfonditi il servizio di posizionamento a pagamento offerto dai principali motori di ricerca (keywords advertising) e gli strumenti di tracciamento dei “comportamenti” on-line degli utenti, che consentono la realizzazione di campagne pubblicitarie mirate (on-line behavioural advertising). Il Web, infatti, non offre più soltanto la possibilità di superare barriere spaziali, linguistiche o temporali e di ampliare la propria sfera di notorietà, ma anche di raggiungere l’utente “interessato” e, pertanto, potenziale acquirente. Di queste nuove realtà pubblicitarie vengono vagliati gli aspetti più critici ed esaminata la disciplina giuridica eventualmente applicabile anche alla luce delle principali decisioni giurisprudenziali nazionali ed europee in materia, nonché delle esperienze giuridiche nord-americane e di tipo autoregolamentare.
Resumo:
Constructing ontology networks typically occurs at design time at the hands of knowledge engineers who assemble their components statically. There are, however, use cases where ontology networks need to be assembled upon request and processed at runtime, without altering the stored ontologies and without tampering with one another. These are what we call "virtual [ontology] networks", and keeping track of how an ontology changes in each virtual network is called "multiplexing". Issues may arise from the connectivity of ontology networks. In many cases, simple flat import schemes will not work, because many ontology managers can cause property assertions to be erroneously interpreted as annotations and ignored by reasoners. Also, multiple virtual networks should optimize their cumulative memory footprint, and where they cannot, this should occur for very limited periods of time. We claim that these problems should be handled by the software that serves these ontology networks, rather than by ontology engineering methodologies. We propose a method that spreads multiple virtual networks across a 3-tier structure, and can reduce the amount of erroneously interpreted axioms, under certain raw statement distributions across the ontologies. We assumed OWL as the core language handled by semantic applications in the framework at hand, due to the greater availability of reasoners and rule engines. We also verified that, in common OWL ontology management software, OWL axiom interpretation occurs in the worst case scenario of pre-order visit. To measure the effectiveness and space-efficiency of our solution, a Java and RESTful implementation was produced within an Apache project. We verified that a 3-tier structure can accommodate reasonably complex ontology networks better, in terms of the expressivity OWL axiom interpretation, than flat-tree import schemes can. We measured both the memory overhead of the additional components we put on top of traditional ontology networks, and the framework's caching capabilities.
Resumo:
I moderni motori a combustione interna diventano sempre più complessi L'introduzione della normativa antinquinamento EURO VI richiederà una significativa riduzione degli inquinanti allo scarico. La maggiore criticità è rappresentata dalla riduzione degli NOx per i motori Diesel da aggiungersi a quelle già in vigore con le precedenti normative. Tipicamente la messa a punto di una nuova motorizzazione prevede una serie di test specifici al banco prova. Il numero sempre maggiore di parametri di controllo della combustione, sorti come conseguenza della maggior complessità meccanica del motore stesso, causa un aumento esponenziale delle prove da eseguire per caratterizzare l'intero sistema. L'obiettivo di questo progetto di dottorato è quello di realizzare un sistema di analisi della combustione in tempo reale in cui siano implementati diversi algoritmi non ancora presenti nelle centraline moderne. Tutto questo facendo particolare attenzione alla scelta dell'hardware su cui implementare gli algoritmi di analisi. Creando una piattaforma di Rapid Control Prototyping (RCP) che sfrutti la maggior parte dei sensori presenti in vettura di serie; che sia in grado di abbreviare i tempi e i costi della sperimentazione sui motopropulsori, riducendo la necessità di effettuare analisi a posteriori, su dati precedentemente acquisiti, a fronte di una maggior quantità di calcoli effettuati in tempo reale. La soluzione proposta garantisce l'aggiornabilità, la possibilità di mantenere al massimo livello tecnologico la piattaforma di calcolo, allontanandone l'obsolescenza e i costi di sostituzione. Questa proprietà si traduce nella necessità di mantenere la compatibilità tra hardware e software di generazioni differenti, rendendo possibile la sostituzione di quei componenti che limitano le prestazioni senza riprogettare il software.