6 resultados para ENDOTHELIAL NO SYNTHASE

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the recent years it is emerged that peripheral arterial disease (PAD) has become a growing health problem in Western countries. This is a progressive manifestation of atherothrombotic vascular disease, which results into the narrowing of the blood vessels of the lower limbs and, as final consequence, in critical leg ischemia. PAD often occurs along with other cardiovascular risk factors, including diabetes mellitus (DM), low-grade inflammation, hypertension, and lipid disorders. Patients with DM have an increased risk of developing PAD, and that risk increases with the duration of DM. Moreover, there is a growing population of patients identified with insulin resistance (IR), impaired glucose tolerance, and obesity, a pathological condition known as “metabolic syndrome”, which presents increased cardiovascular risk. Atherosclerosis is the earliest symptom of PAD and is a dynamic and progressive disease arising from the combination of endothelial dysfunction and inflammation. Endothelial dysfunction is a broad term that implies diminished production or availability of nitric oxide (NO) and/or an imbalance in the relative contribution of endothelium-derived relaxing factors. The secretion of these agents is considerably reduced in association with the major risks of atherosclerosis, especially hyperglycaemia and diabetes, and a reduced vascular repair has been observed in response to wound healing and to ischemia. Neovascularization does not only rely on the proliferation of local endothelial cells, but also involves bone marrow-derived stem cells, referred to as endothelial progenitor cells (EPCs), since they exhibit endothelial surface markers and properties. They can promote postnatal vasculogenesis by homing to, differentiating into an endothelial phenotype, proliferating and incorporating into new vessels. Consequently, EPCs are critical to endothelium maintenance and repair and their dysfunction contributes to vascular disease. The aim of this study has been the characterization of EPCs from healthy peripheral blood, in terms of proliferation, differentiation and function. Given the importance of NO in neovascularization and homing process, it has been investigated the expression of NO synthase (NOS) isoforms, eNOS, nNOS and iNOS, and the effects of their inhibition on EPC function. Moreover, it has been examined the expression of NADPH oxidase (Nox) isoforms which are the principal source of ROS in the cell. In fact, a number of evidences showed the correlation between ROS and NO metabolism, since oxidative stress causes NOS inactivation via enzyme uncoupling. In particular, it has been studied the expression of Nox2 and Nox4, constitutively expressed in endothelium, and Nox1. The second part of this research was focused on the study of EPCs under pathological conditions. Firstly, EPCs isolated from healthy subject were cultured in a hyperglycaemic medium, in order to evaluate the effects of high glucose concentration on EPCs. Secondly, EPCs were isolated from the peripheral blood of patients affected with PAD, both diabetic or not, and it was assessed their capacity to proliferate, differentiate, and to participate to neovasculogenesis. Furthermore, it was investigated the expression of NOS and Nox in these cells. Mononuclear cells isolated from peripheral blood of healthy patients, if cultured under differentiating conditions, differentiate into EPCs. These cells are not able to form capillary-like structures ex novo, but participate to vasculogenesis by incorporation into the new vessels formed by mature endothelial cells, such as HUVECs. With respect to NOS expression, these cells have high levels of iNOS, the inducible isoform of NOS, 3-4 fold higher than in HUVECs. While the endothelial isoform, eNOS, is poorly expressed in EPCs. The higher iNOS expression could be a form of compensation of lower eNOS levels. Under hyperglycaemic conditions, both iNOS and eNOS expression are enhanced compared to control EPCs, as resulted from experimental studies in animal models. In patients affected with PAD, the EPCs may act in different ways. Non-diabetic patients and diabetic patients with a higher vascular damage, evidenced by a higher number of circulating endothelial cells (CECs), show a reduced proliferation and ability to participate to vasculogenesis. On the other hand, diabetic patients with lower CEC number have proliferative and vasculogenic capacity more similar to healthy EPCs. eNOS levels in both patient types are equivalent to those of control, while iNOS expression is enhanced. Interestingly, nNOS is not detected in diabetic patients, analogously to other cell types in diabetics, which show a reduced or no nNOS expression. Concerning Nox expression, EPCs present higher levels of both Nox1 and Nox2, in comparison with HUVECs, while Nox4 is poorly expressed, probably because of uncompleted differentiation into an endothelial phenotype. Nox1 is more expressed in PAD patients, diabetic or not, than in controls, suggesting an increased ROS production. Nox2, instead, is lower in patients than in controls. Being Nox2 involved in cellular response to VEGF, its reduced expression can be referable to impaired vasculogenic potential of PAD patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The H+/ATP ratio in the catalysis of ATP synthase has generally been considered a fixed parameter. However, Melandri and coworkers have recently shown that, in the ATP synthase of the photosynthetic bacterium Rb.capsulatus, this ratio can significantly decrease during ATP hydrolysis when the concentration of either ADP or Pi is maintained at a low level (Turina et al., 2004). The present work has dealt with the ATP synthase of E.coli, looking for evidence of this phenomenon of intrinsic uncoupling in this organism as well. First of all, we have shown that the DCCD-sensitive ATP hydrolysis activity of E.coli internal membranes was strongly inhibited by ADP and Pi, with a half-maximal effect in the submicromolar range for ADP and at 140 µM for Pi. In contrast to this monotonic inhibition, however, the proton pumping activity of the enzyme, as estimated under the same conditions by the fluorescence quenching of the ΔpH-sensitive probe ACMA, showed a clearly biphasic progression, both for Pi, increasing from 0 up to approximately 200 µM, and for ADP, increasing from 0 up to a few µM. We have interpreted these results as indicating that the occupancy of ADP and Pi binding sites shifts the enzyme from a partially uncoupled state to a fully coupled state, and we expect that the ADP- and Pi-modulated intrinsic uncoupling is likely to be a general feature of prokaryotic ATP synthases. Moreover, the biphasicity of the proton pumping data suggested that two Pi binding sites are involved. In order to verify whether the same behaviour could be observed in the isolated enzyme, we have purified the ATP synthase of E.coli and reconstituted it into liposomes. Similarly as observed in the internal membrane preparation, in the isolated and reconstituted enzyme it was possible to observe inhibition of the hydrolytic activity by ADP and Pi (with half-maximal effects at few µM for ADP and at 400 µM for Pi) with a concomitant stimulation of proton pumping. Both the inhibition of ATP hydrolysis and the stimulation of proton pumping as a function of Pi were lost upon ADP removal by an ADP trap. These data have made it possible to conclude that the results obtained in E.coli internal membranes are not due to the artefactual interference of enzymatic activities other than the ones of the ATP synthase. In addition, data obtained with liposomes have allowed a calibration of the ACMA signal by ΔpH transitions of known extent, leading to a quantitative evaluation of the proton pumping data. Finally, we have focused our efforts on searching for a possible structural candidate involved in the phenomenon of intrinsic uncoupling. The ε-subunit of the ATP-synthase is known as an endogenous inhibitor of the hydrolysis activity of the complex and appears to undergo drastic conformational changes between a non-inhibitory form (down-state) and an inhibitory form (up-state)(Rodgers & Wilce, 2000; Gibbons et al., 2000). In addition, the results of Cipriano & Dunn (2006) indicated that the C-terminal domain of this subunit played an important role in the coupling mechanism of the pump, and those of Capaldi et al. (2001), Suzuki et al. (2003) were consistent with the down-state showing a higher hydrolysis-to-synthesis ratio than the up-state. Therefore, we decided to search for modulation of pumping efficiency in a C-terminally truncated ε mutant. A low copy number expression vector has been built, carrying an extra copy of uncC, with the aim of generating an ε-overexpressing E.coli strain in which normal levels of assembly of the mutated ATP-synthase complex would be promoted. We have then compared the ATP hydrolysis and the proton pumping activity in membranes prepared from these ε-overexpressing E.coli strains, which carried either the WT ε subunit or the ε88-stop truncated form. Both strains yielded well energized membranes. Noticeably, they showed a marked difference in the inhibition of hydrolysis by Pi, this effect being largely lost in the truncated mutant. However, pre-incubation of the mutated enzyme with ADP at low nanomolar concentrations (apparent Kd = 0.7nM) restored the hydrolysis inhibition, together with the modulation of intrinsic uncoupling by Pi, indicating that, contrary to wild-type, during membrane preparation the truncated mutant had lost the ADP bound at this high-affinity site, evidently due to a lower affinity (and/or higher release) for ADP of the mutant relative to wild type. Therefore, one of the effects of the C-terminal domain of ε appears to be to modulate the affinity of at least one of the binding sites for ADP. The lack of this domain does not appear so much to influence the modulability of coupling efficiency, but instead the extent of this modulation. At higher preincubated ADP concentrations (apparent Kd = 117nM), the only observed effects were inhibition of both hydrolysis and synthesis, providing a direct proof that two ADP-binding sites on the enzyme are involved in the inhibition of hydrolysis, of which only the one at higher affinity also modulates the coupling efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondria have a central role in energy supply in cells, ROS production and apoptosis and have been implicated in several human disease and mitochondrial dysfunctions in hypoxia have been related with disorders like Type II Diabetes, Alzheimer Disease, inflammation, cancer and ischemia/reperfusion in heart. When oxygen availability becomes limiting in cells, mitochondrial functions are modulated to allow biologic adaptation. Cells exposed to a reduced oxygen concentration readily respond by adaptive mechanisms to maintain the physiological ATP/ADP ratio, essential for their functions and survival. In the beginning, the AMP-activated protein kinase (AMPK) pathway is activated, but the responsiveness to prolonged hypoxia requires the stimulation of hypoxia-inducible factors (HIFs). In this work we report a study of the mitochondrial bioenergetics of primary cells exposed to a prolonged hypoxic period . To shine light on this issue we examined the bioenergetics of fibroblast mitochondria cultured in hypoxic atmospheres (1% O2) for 72 hours. Here we report on the mitochondrial organization in cells and on their contribution to the cellular energy state. Our results indicate that prolonged hypoxia cause a significant reduction of mitochondrial mass and of the quantity of the oxidative phosphorylation complexes. Hypoxia is also responsible to damage mitochondrial complexes as shown after normalization versus citrate synthase activity. HIF-1α plays a pivotal role in wound healing, and its expression in the multistage process of normal wound healing has been well characterized, it is necessary for cell motility, expression of angiogenic growth factor and recruitment of endothelial progenitor cells. We studied hypoxia in the pathological status of diabetes and complications of diabetes and we evaluated the combined effect of hyperglycemia and hypoxia on human dermal fibroblasts (HDFs) and human dermal micro-vascular endothelial cells (HDMECs) that were grown in high glucose, low glucose concentrations and mannitol as control for the osmotic challenge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nel 1997 venne isolata una popolazione cellulare con caratteristiche appartenenti a cellule endoteliali mature e a cellule progenitrici ; le cellule appartenenti a queste popolazione furono denominate EPCs (cellule endoteliali progenitrici circolanti) e fu messa in evidenza la loro capacità di dare origine a vasculogenesi postnatale. Lo scopo dello studio è stata la caratterizzazione di tale popolazione cellulare in termini biologici e la valutazione delle differenze delle EPCs in soggetti sani e nefropatici in emodialisi. È stata infine valutata l’eventuale capacità della Vitamina D di influenzare le capacità delle Late EPCs in termini di formazione di colonie in vitro e di attività anticalcifica in soggetti in insufficienza renale cronica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human airway epithelium is a pseudostratified heterogenous layer comprised of cili-ated, secretory, intermediate and basal cells. As the stem/progenitor population of the airway epi-thelium, airway basal cells differentiate into ciliated and secretory cells to replenish the airway epithelium during physiological turnover and repair. Transcriptome analysis of airway basal cells revealed high expression of vascular endothelial growth factor A (VEGFA), a gene not typically associated with the function of this cell type. Using cultures of primary human airway basal cells, we demonstrate that basal cells express all of the 3 major isoforms of VEGFA (121, 165 and 189) but lack functional expression of the classical VEGFA receptors VEGFR1 and VEGFR2. The VEGFA is actively secreted by basal cells and while it appears to have no direct autocrine function on basal cell growth and proliferation, it functions in a paracrine manner to activate MAPK signaling cascades in endothelium via VEGFR2 dependent signaling pathways. Using a cytokine- and serum-free co-culture system of primary human airway basal cells and human endothelial cells revealed that basal cell secreted VEGFA activated endothelium to ex-press mediators that, in turn, stimulate and support basal cell proliferation and growth. These data demonstrate novel VEGFA mediated cross-talk between airway basal cells and endothe-lium, the purpose of which is to modulate endothelial activation and in turn stimulate and sustain basal cell growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. Neoangiogenesis is crucial in plaque progression and instability. Previous data from our group demonstrated that intra-plaque neovessels show both a Nestin+/WT+ and a Nestin+/WT1- phenotype, the latter being correlated with complications and plaque instability. Aims. The aims of the present thesis are: (i) to confirm our previous results on Nestin/WT1 phenotype in a larger series of carotid atheromatous plaques, (ii) to evaluate the relationship between the Nestin+/WT1- neoangiogenesis phenotype and plaque morphology, (iii) to evaluate the relationship between the immunohistochemical and histopathological characteristics and the clinical instability of the plaques. Materials and Methods. Seventy-three patients (53 males, 20 females, mean age 71 years) were consecutively enrolled. Symptoms, brain CT scan, 14 histological variables, including intraplaque hemorrhage and diffuse calcifications, were collected. Immunohistochemistry for CD34, Nestin and WT1 was performed. RT-PCR was performed to evaluate Nestin and WT1 mRNA (including 5 healthy arteries as controls). Results. Diffusely calcified plaques (13 out of 73) were found predominantly in females (P=0.017), with a significantly lower incidence of symptoms (TIA/stroke) and brain focal lesions (P=0.019 and P=0.013 respectively) than not-calcified plaques, but with the same incidence of intraplaque complications (P=0.156). Accordingly, both calcified and not calcified plaques showed similar mean densities of positivity for CD34, Nestin and WT1. The density of Nestin and WT1 correlated with the occurrence of intra-plaque hemorrhage in all cases, while the density of CD34 correlated only in not-calcified plaques. Conclusions. We confirmed that the Nestin+/WT1- phenotype characterizes the neovessels of instable plaques, regardless the real amount of CD34-positive neoangiogenesis. The calcified plaques show the same incidence of histological complications, albeit they do not influence symptomatology and plaque vulnerability. Female patients show a much higher incidence of not-complicated or calcified plaques, receiving de facto a sort of protection compared to male patients.