2 resultados para ECOGRÁFICA ABDOMINAL – PRIMATES

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We usually perform actions in a dynamic environment and changes in the location of a target for an upcoming action require both covert shifts of attention and motor planning update. In this study we tested whether, similarly to oculomotor areas that provide signals for overt and covert attention shifts, covert attention shifts modulate activity in cortical area V6A, which provides a bridge between visual signals and arm-motor control. We performed single cell recordings in monkeys trained to fixate straight-ahead while shifting attention outward to a peripheral cue and inward again to the fixation point. We found that neurons in V6A are influenced by spatial attention demonstrating that visual, motor, and attentional responses can occur in combination in single neurons of V6A. This modulation in an area primarily involved in visuo-motor transformation for reaching suggests that also reach-related regions could directly contribute in the shifts of spatial attention necessary to plan and control goal-directed arm movements. Moreover, to test whether V6A is causally involved in these processes, we have performed a human study using on-line repetitive transcranial magnetic stimulation over the putative human V6A (pV6A) during an attention and a reaching task requiring covert shifts of attention and reaching movements towards cued targets in space. We demonstrate that the pV6A is causally involved in attention reorienting to target detection and that this process interferes with the execution of reaching movements towards unattended targets. The current findings suggest the direct involvement of the action-related dorso-medial visual stream in attentional processes, and a more specific role of V6A in attention reorienting. Therefore, we propose that attention signals are used by the V6A to rapidly update the current motor plan or the ongoing action when a behaviorally relevant object unexpectedly appears at an unattended location.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. Ageing and inflammation are critical for the occurrence of aortic diseases. Extensive inflammatory infiltrate and excessive ECM proteloysis, mediated by MMPs, are typical features of abdominal aortic aneurysm (AAA). Mesenchymal Stromal Cells (MSCs) have been detected within the vascular wall and represent attractive candidates for regenerative medicine, in virtue of mesodermal lineage differentiation and immunomodulatory activity. Meanwhile, many works have underlined an impaired MSC behaviour under pathological conditions. This study was aimed to define a potential role of vascular MSCs to AAA development. Methods. Aortic tissues were collected from AAA patients and healthy donors. Our analysis was organized on three levels: 1) histology of AAA wall; 2) detection of MSCs and evaluation of MMP-9 expression on AAA tissue; 3) MSC isolation from AAA wall and characterization for mesenchymal/stemness markers, MMP-2, MMP-9, TIMP-1, TIMP-2 and EMMPRIN. AAA-MSCs were tested for immunomodulation, when cultured together with activated peripheral blood mononuclear cells (PBMCs). In addition, a co-colture of both healthy and AAA MSCs was assessed and afterwards MMP-2/9 mRNA levels were analyzed. Results. AAA-MSCs showed basic mesenchymal properties: fibroblastic shape, MSC antigens, stemness genes. MMP-9 mRNA, protein and enzymatic activity were significantly increased in AAA-MSCs. Moreover, AAA-MSCs displayed a weak immunosuppressive activity, as shown by PBMC ongoing along cell cycle. MMP-9 was shown to be modulated at the transcriptional level through the direct contact as well as the paracrine action of healthy MSCs. Discussion. Vascular injury did not affect the MSC basic phenotype, but altered their function, a increased MMP-9 expression and ineffective immunmodulation. These data suggest that vascular MSCs can contribute to aortic disease. In this view, the study of key processes to restore MSC immunomodulation could be relevant to find a pharmacological approach for monitoring the aneurysm progression.