5 resultados para Dual-fuel Diesel RCCI LTC
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The pursuit of decarbonization and increased efficiency in internal combustion engines (ICE) is crucial for reducing pollution in the mobility sector. While electrification is a long-term goal, ICE still has a role to play if coupled with innovative technologies. This research project explores various solutions to enhance ICE efficiency and reduce emissions, including Low Temperature Combustion (LTC), Dual fuel combustion with diesel and natural gas, and hydrogen integration. LTC methods like Dual fuel and Reactivity Controlled Compression Ignition (RCCI) show promise in lowering emissions such as NOx, soot, and CO2. Dual fuel Diesel-Natural Gas with hydrogen addition demonstrates improved efficiency, especially at low loads. RCCI Diesel-Gasoline engines offer increased Brake Thermal Efficiency (BTE) compared to standard diesel engines while reducing specific NOx emissions. The study compares 2-Stroke and 4-Stroke engine layouts, optimizing scavenging systems for both aircraft and vehicle applications. CFD analysis enhances specific power output while addressing injection challenges to prevent exhaust short circuits. Additionally, piston bowl shape optimization in Diesel engines running on Dual fuel (Diesel-Biogas) aims to reduce NOx emissions and enhance thermal efficiency. Unconventional 2-Stroke architectures, such as reverse loop scavenged with valves for high-performance cars, opposed piston engines for electricity generation, and small loop scavenged engines for scooters, are also explored. These innovations, alongside ultra-lean hydrogen combustion, offer diverse pathways toward achieving climate neutrality in the transport sector.
Resumo:
The aim of the Ph.D. research project was to explore Dual Fuel combustion and hybridization. Natural gas-diesel Dual Fuel combustion was experimentally investigated on a 4-Stroke, 2.8 L, turbocharged, light-duty Diesel engine, considering four operating points in the range between low to medium-high loads at 3000 rpm. Then, a numerical analysis was carried out using a customized version of the KIVA-3V code, in order to optimize the diesel injection strategy of the highest investigated load. A second KIVA-3V model was used to analyse the interchangeability between natural gas and biogas on an intermediate operating point. Since natural gas-diesel Dual Fuel combustion suffers from poor combustion efficiency at low loads, the effects of hydrogen enriched natural gas on Dual Fuel combustion were investigated using a validated Ansys Forte model, followed by an optimization of the diesel injection strategy and a sensitivity analysis to the swirl ratio, on the lowest investigated load. Since one of the main issues of Low Temperature Combustion engines is the low power density, 2-Stroke engines, thanks to the double frequency compared to 4-Stroke engines, may be more suitable to operate in Dual Fuel mode. Therefore, the application of gasoline-diesel Dual Fuel combustion to a modern 2-Stroke Diesel engine was analysed, starting from the investigation of gasoline injection and mixture formation. As far as hybridization is concerned, a MATLAB-Simulink model was built to compare a conventional (combustion) and a parallel-hybrid powertrain applied to a Formula SAE race car.
Resumo:
DI Diesel engine are widely used both for industrial and automotive applications due to their durability and fuel economy. Nonetheless, increasing environmental concerns force that type of engine to comply with increasingly demanding emission limits, so that, it has become mandatory to develop a robust design methodology of the DI Diesel combustion system focused on reduction of soot and NOx simultaneously while maintaining a reasonable fuel economy. In recent years, genetic algorithms and CFD three-dimensional combustion simulations have been successfully applied to that kind of problem. However, combining GAs optimization with actual CFD three-dimensional combustion simulations can be too onerous since a large number of calculations is usually needed for the genetic algorithm to converge, resulting in a high computational cost and, thus, limiting the suitability of this method for industrial processes. In order to make the optimization process less time-consuming, CFD simulations can be more conveniently used to generate a training set for the learning process of an artificial neural network which, once correctly trained, can be used to forecast the engine outputs as a function of the design parameters during a GA optimization performing a so-called virtual optimization. In the current work, a numerical methodology for the multi-objective virtual optimization of the combustion of an automotive DI Diesel engine, which relies on artificial neural networks and genetic algorithms, was developed.
Resumo:
Zero-carbon powertrains development has become one of the main challenges for automotive industries around the world. Following this guideline, several approaches such as powertrain electrification, advanced combustions, and hydrogen internal combustion engines have been aimed to achieve the goal. Low Temperature Combustions, characterized by a simultaneous reduction of fuel consumption and emissions, represent one of the most studied solutions moving towards a sustainable mobility. Previous research demonstrate that Gasoline partially premixed Compression Ignition combustion is one of the most promising LTC. Mainly characterized by the high-pressure direct-injection of gasoline and the spontaneous ignition of the premixed air-fuel mixture, GCI combustion has shown a good potential to achieve the high thermal efficiency and low pollutants in compression ignited engines required by future emission regulations. Despite its potential, GCI combustion might suffer from low combustion controllability and stability, because gasoline spontaneous ignition is significantly affected by slight variations of the local in-cylinder thermal conditions. Therefore, to properly control GCI combustion assuring the maximum performance, a deep knowledge of the combustion process, i.e., gasoline auto-ignition and the effect of the control parameters on the combustion and pollutants, is mandatory. This PhD dissertation focuses on the study of GCI combustion in a light-duty compression ignited engine. Starting from a standard 1.3L diesel engine, this work describes the activities made moving toward the full conversion of the engine. A preliminary study of the GCI combustion was conducted in a “Single-Cylinder” engine configuration highlighting combustion characteristics and dependencies on the control parameters. Then, the full engine conversion was performed, and a wide experimental campaign allowed to confirm the benefits of this advanced combustion methodologies in terms of pollutants and thermal efficiency. The analysis of the in-cylinder pressure signal allowed to study in depth the GCI combustion and develop control-oriented models aimed to improve the combustion stability.
Resumo:
Nowadays, the spreading of the air pollution crisis enhanced by greenhouse gases emission is leading to the worsening of global warming. Recently, several metropolitan cities introduced Zero-Emissions Zones where the use of the Internal Combustion Engine is forbidden to reduce localized pollutants emissions. This is particularly problematic for Plug-in Hybrid Electric Vehicles, which usually work in depleting mode. In order to address these issues, the present thesis presents a viable solution by exploiting vehicular connectivity to retrieve navigation data of the urban event along a selected route. The battery energy needed, in the form of a minimum State of Charge (SoC), is calculated by a Speed Profile Prediction algorithm and a Backward Vehicle Model. That value is then fed to both a Rule-Based Strategy, developed specifically for this application, and an Adaptive Equivalent Consumption Minimization Strategy (A-ECMS). The effectiveness of this approach has been tested with a Connected Hardware-in-the-Loop (C-HiL) on a driving cycle measured on-road, stimulating the predictions with multiple re-routings. However, even if hybrid electric vehicles have been recognized as a valid solution in response to increasingly tight regulations, the reduced engine load and the repeated engine starts and stops may reduce substantially the temperature of the exhaust after-treatment system (EATS), leading to relevant issues related to pollutant emission control. In this context, electrically heated catalysts (EHCs) represent a promising solution to ensure high pollutant conversion efficiency without affecting engine efficiency and performance. This work aims at studying the advantages provided by the introduction of a predictive EHC control function for a light-duty Diesel plug-in hybrid electric vehicle (PHEV) equipped with a Euro 7-oriented EATS. Based on the knowledge of future driving scenarios provided by vehicular connectivity, engine first start can be predicted and therefore an EATS pre-heating phase can be planned.