4 resultados para Drug-drug interactions
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Great strides have been made in the last few years in the pharmacological treatment of neuropsychiatric disorders, with the introduction into the therapy of several new and more efficient agents, which have improved the quality of life of many patients. Despite these advances, a large percentage of patients is still considered “non-responder” to the therapy, not drawing any benefits from it. Moreover, these patients have a peculiar therapeutic profile, due to the very frequent application of polypharmacy, attempting to obtain satisfactory remission of the multiple aspects of psychiatric syndromes. Therapy is heavily individualised and switching from one therapeutic agent to another is quite frequent. One of the main problems of this situation is the possibility of unwanted or unexpected pharmacological interactions, which can occur both during polypharmacy and during switching. Simultaneous administration of psychiatric drugs can easily lead to interactions if one of the administered compounds influences the metabolism of the others. Impaired CYP450 function due to inhibition of the enzyme is frequent. Other metabolic pathways, such as glucuronidation, can also be influenced. The Therapeutic Drug Monitoring (TDM) of psychotropic drugs is an important tool for treatment personalisation and optimisation. It deals with the determination of parent drugs and metabolites plasma levels, in order to monitor them over time and to compare these findings with clinical data. This allows establishing chemical-clinical correlations (such as those between administered dose and therapeutic and side effects), which are essential to obtain the maximum therapeutic efficacy, while minimising side and toxic effects. It is evident the importance of developing sensitive and selective analytical methods for the determination of the administered drugs and their main metabolites, in order to obtain reliable data that can correctly support clinical decisions. During the three years of Ph.D. program, some analytical methods based on HPLC have been developed, validated and successfully applied to the TDM of psychiatric patients undergoing treatment with drugs belonging to following classes: antipsychotics, antidepressants and anxiolytic-hypnotics. The biological matrices which have been processed were: blood, plasma, serum, saliva, urine, hair and rat brain. Among antipsychotics, both atypical and classical agents have been considered, such as haloperidol, chlorpromazine, clotiapine, loxapine, risperidone (and 9-hydroxyrisperidone), clozapine (as well as N-desmethylclozapine and clozapine N-oxide) and quetiapine. While the need for an accurate TDM of schizophrenic patients is being increasingly recognized by psychiatrists, only in the last few years the same attention is being paid to the TDM of depressed patients. This is leading to the acknowledgment that depression pharmacotherapy can greatly benefit from the accurate application of TDM. For this reason, the research activity has also been focused on first and second-generation antidepressant agents, like triciclic antidepressants, trazodone and m-chlorophenylpiperazine (m-cpp), paroxetine and its three main metabolites, venlafaxine and its active metabolite, and the most recent antidepressant introduced into the market, duloxetine. Among anxiolytics-hypnotics, benzodiazepines are very often involved in the pharmacotherapy of depression for the relief of anxious components; for this reason, it is useful to monitor these drugs, especially in cases of polypharmacy. The results obtained during these three years of Ph.D. program are reliable and the developed HPLC methods are suitable for the qualitative and quantitative determination of CNS drugs in biological fluids for TDM purposes.
Resumo:
In this thesis, we deal with the design of experiments in the drug development process, focusing on the design of clinical trials for treatment comparisons (Part I) and the design of preclinical laboratory experiments for proteins development and manufacturing (Part II). In Part I we propose a multi-purpose design methodology for sequential clinical trials. We derived optimal allocations of patients to treatments for testing the efficacy of several experimental groups by also taking into account ethical considerations. We first consider exponential responses for survival trials and we then present a unified framework for heteroscedastic experimental groups that encompasses the general ANOVA set-up. The very good performance of the suggested optimal allocations, in terms of both inferential and ethical characteristics, are illustrated analytically and through several numerical examples, also performing comparisons with other designs proposed in the literature. Part II concerns the planning of experiments for processes composed of multiple steps in the context of preclinical drug development and manufacturing. Following the Quality by Design paradigm, the objective of the multi-step design strategy is the definition of the manufacturing design space of the whole process and, as we consider the interactions among the subsequent steps, our proposal ensures the quality and the safety of the final product, by enabling more flexibility and process robustness in the manufacturing.
Resumo:
Recent research trends in computer-aided drug design have shown an increasing interest towards the implementation of advanced approaches able to deal with large amount of data. This demand arose from the awareness of the complexity of biological systems and from the availability of data provided by high-throughput technologies. As a consequence, drug research has embraced this paradigm shift exploiting approaches such as that based on networks. Indeed, the process of drug discovery can benefit from the implementation of network-based methods at different steps from target identification to drug repurposing. From this broad range of opportunities, this thesis is focused on three main topics: (i) chemical space networks (CSNs), which are designed to represent and characterize bioactive compound data sets; (ii) drug-target interactions (DTIs) prediction through a network-based algorithm that predicts missing links; (iii) COVID-19 drug research which was explored implementing COVIDrugNet, a network-based tool for COVID-19 related drugs. The main highlight emerged from this thesis is that network-based approaches can be considered useful methodologies to tackle different issues in drug research. In detail, CSNs are valuable coordinate-free, graphically accessible representations of structure-activity relationships of bioactive compounds data sets especially for medium-large libraries of molecules. DTIs prediction through the random walk with restart algorithm on heterogeneous networks can be a helpful method for target identification. COVIDrugNet is an example of the usefulness of network-based approaches for studying drugs related to a specific condition, i.e., COVID-19, and the same ‘systems-based’ approaches can be used for other diseases. To conclude, network-based tools are proving to be suitable in many applications in drug research and provide the opportunity to model and analyze diverse drug-related data sets, even large ones, also integrating different multi-domain information.
Resumo:
Advanced analytical methodologies were developed to characterize new potential active MTDLs on isolated targets involved in the first stages of Alzheimer’s disease (AD). In addition, the methods investigated drug-protein bindings and evaluated protein-protein interactions involved in the neurodegeneration. A high-throughput luminescent assay allowed the study of the first in class GSK-3β/ HDAC dual inhibitors towards the enzyme GSK-3β. The method was able to identify an innovative disease-modifying agent with an activity in the micromolar range both on GSK-3β, HDAC1 and HDAC6. Then, the same assay reliably and quickly selected true positive hit compounds among natural Amaryllidaceae alkaloids tested against GSK-3β. Hence, given the central role of the amyloid pathway in the multifactorial nature of AD, a multi-methodological approach based on mass spectrometry (MS), circular dichroism spectroscopy (CD) and ThT assay was applied to characterize the potential interaction of CO releasing molecules (CORMs) with Aβ1-42 peptide. The comprehensive method provided reliable information on the different steps of the fibrillation process and regarding CORMs mechanism of action. Therefore, the optimal CORM-3/Aβ1−42 ratio in terms of inhibitory effect was identified by mass spectrometry. CD analysis confirmed the stabilizing effect of CORM-3 on the Aβ1−42 peptide soluble form and the ThT Fluorescent Analysis ensured that the entire fibrillation process was delayed. Then the amyloid aggregation process was studied in view of a possible correlation with AD lipid brain alterations. Therefore, SH-SY5Y cells were treated with increasing concentration of Aß1-42 at different times and the samples were analysed by a RP-UHPLC system coupled with a high-resolution quadrupole TOF mass spectrometer in comprehensive data-independent SWATH acquisition mode. Each lipid class profiling in SH-SY5Y cells treated with Aß1-42 was compared to the one obtained from the untreated. The approach underlined some peculiar lipid alterations, suitable as biomarkers, that might be correlated to Aß1-42 different aggregation species.