4 resultados para Droplet digital PCR
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
MicroRNAs act as oncogene or tumor suppressor gene regulators and are actively released from tumor cells in the circulation. Specific microRNAs can be isolated and quantified in the blood, usually in serum or plasma fractions, where they are uncommonly stable. Cell-free microRNAs serve many, and possibly yet unexplored, functional roles and microRNA levels reflect underlying conditions and have been associated with skin cancer presence, stage and evolution. However, the clinical potential of circulating miRNAs in metastatic melanoma remains largely undefined. From May 2020 to September 2022, we conducted a spontaneous, monocentric, exploratory study on human tissues in vitro, which aimed to evaluate the prognostic and predictive role of circulating miRNAs in metastatic melanoma patients. At the Medical Oncology Unit of Policlinico Sant’Orsola-Malpighi of Bologna, peripheral venous blood samples from patients with metastatic melanoma treated with checkpoint inhibitors (CPI) were collected before the start of CPI (baseline, T0) and longitudinally, approximately every 3 months (T1, T2, etc). Circulating miRNA quantification was performed by droplet digital PCR (Biorad) using an EvaGreen and LNA primer-based assays. QuantaSoft Program (Biorad) calculated the absolute quantifications of each miRNA, indicated as copies/µL. After analysis of the literature, we chose to analyze miR-155-5p, miR-320a and miR-424-5p level. All miRNAs except miR-424-5p show a significantly higher level in plasma of patients who are alive after 1 year of follow-up. High/low levels of baseline miR-155-5p, miR-320a and miR-424-5p are significantly associated with overall survival and progression-free survival. Furthermore, a preliminary analysis on the group of patients who received first-line with anti-PD-1 (N=7), baseline miR-155-5p shows higher levels in responder vs. non responder patients (p 0.06). These data, though promising, are preliminary and need to be further investigated in a larger cohort of patients.
Resumo:
The Workflow activity was the following: Preliminary phase: Identification of 18 Formalin-fixed paraffin embedded (FFPE) samples (9 patients) («matched» 9 AK lesions and 9 SCC lesions). Working on biopsies samples we perform an extraction and RNA analysis with droplet Digital PCR (ddPCR) and we perform the data analysis. Second and final step phase: Evaluation of additional 39 subjects (36 men and 3 women). Results: We perform an evaluation and comparison of the following miRNA: miR-320 (a miRNA involved in apoptosis and cell proliferation control; miR-204, a miRNA involved in cell proliferation in and miRNA-16-5p, a miRNA involved in apoptosis).Conclusion: Our data suggest that there is no significant variation in the expression of the three tested microRNAs between adjacent AK lesions and squamous-cell carcinoma. However, a relevant trend has been observed Furthermore, by evaluating the miRNA expression trend between keratosis and carcinoma of the same patient, it is observed that there is no "uniform trend": for some samples the expression rises for the transition from AK to SCC and viceversa.
Resumo:
Cancers of unknown primary site (CUPs) are a rare group of metastatic tumours, with a frequency of 3-5%, with an overall survival of 6-10 month. The identification of tumour primary site is usually reached by a combination of diagnostic investigations and immunohistochemical testing of the tumour tissue. In CUP patients, these investigations are inconclusive. Since international guidelines for treatment are based on primary site indication, CUP treatment requires a blind approach. As a consequence, CUPs are usually empiric treated with poorly effective. In this study, we applied a set of microRNAs using EvaGreen-based Droplet Digital PCR in a retrospective and prospective collection of formalin-fixed paraffin-embedded tissue samples. We assessed miRNA expression of 155 samples including primary tumours (N=94), metastases of known origin (N=10) and metastases of unknown origin (N=50). Then, we applied the shrunken centroids predictive algorithm to obtain the CUP’s site(s)-of-origin. The molecular test was successfully applied to all CUP samples and provided a site-of-origin identification for all samples, potentially within a one-week time frame from sample inclusion. In the second part of the study we derived two CUP cell lines, and corresponding patient-derived xenografts (PDXs). CUP cell lines and PDXs underwent histological, molecular, and genomic characterization confirming the features of the original tumour. Tissues-of-origin prediction was obtained from the tumour microRNA expression profile and confirmed by single cell RNA sequencing. Genomic testing analysis identified FGFR2 amplification in both models. Drug-screening assays were performed to test the activity of FGFR2-targeting drug and the combination treatment with the MEK inhibitor trametinib, which proved to be synergic and exceptionally active, both in vitro and in vivo. In conclusion, our study demonstrated that miRNA expression profiling could be employed as diagnostic test. Then we successfully derived two CUP models from patients, used for therapy tests, bringing personalized therapy closer to CUP patients.
Resumo:
Systemic Mastocytosis (SM) is a hematological disorder characterized by abnormal proliferation of mast cells in various organs, ranging from indolent variants to advanced entities with poor prognosis. The KIT D816V gene mutation drives mast cell growth, but its presence alone is not fully transforming. The SETD2 gene, responsible for maintaining genomic integrity, is often impaired in advanced SM (advSM), leading to reduced expression of histone marker H3K36Me3. Proteasome inhibitors are effective in restoring SETD2 function and suppressing mast cell growth, offering an alternative therapy for patients resistant to tyrosine kinase inhibitors. Aberrant expression of Plk1 and Aurora kinase A correlates with SETD2 loss and can be targeted with inhibitors like alisertib and volasertib, leading to reduced cell growth and apoptosis. Additionally, inhibition of Wee1 enhances apoptosis and reduces colony growth in SM cells. Molecular diagnostic techniques like droplet digital polymerase chain reaction (ddPCR) offer a less invasive and reliable method for detecting the D816V mutation in peripheral blood, and efforts to standardize molecular assays across laboratories show promising reproducibility. Overall, this research provides new insights into the mechanisms of advanced SM, identifies potential therapeutic targets, and validates molecular diagnostic tools for SM diagnosis.