17 resultados para Donor and acceptor conjugated blocks
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The work presented in this thesis tackles some important points concerning the collective properties of two typical categories of molecular crystals, i.e., anthracene derivatives and charge transfer crystals. Anthracene derivatives have constituted the class of materials from which systematical investigations of crystal-to-crystal photodimerization reactions started, developed and have been the subject of a new awakening in the recent years. In this work some of these compounds, namely, 9-cyanoanthacene, 9-anthacenecarboxylic acid and 9-methylanthracene, have been selected as model systems for a phenomenological approach to some key properties of the solid state, investigated by spectroscopic methods. The present results show that, on the basis of the solid state organization and the chemical nature of each compound, photo-reaction dynamics and kinetics display distinctive behaviors, which allows for a classification of the various processes in topochemical, non topochemical, reversible or topophysical. The second part of the thesis was focused on charge transfer crystals, binary systems formed by stoichiometric combinations of the charge donating perylene (D) and the charge accepting tetracyano-quinodimethane (A), this latter also in its fluorinated derivatives. The work was focused on the growth of single crystals, some of which not yet reported in the literature, by PVT technique. Structural and spectroscopic characterizations have been performed, with the aim of determining the degree of charge transfer between donor and acceptor in the co-crystals. An interesting outcome of the systematic search performed in this work is the definition of the experimental conditions which drive the crystal growth of the binary systems either towards the low (1:1) or the high ratio (3:1 or 3:2) stoichiometries.
Resumo:
The rotational spectroscopy of several sulfur bearing molecules and their 1:1 water complex, cysteamine, cysteamine monohydrate, 1-thioglycerol and 1-propanethiol were studied in the micro-wave and (or) millimeter-wave range. Precise laboratory spectra and conformational information were obtained. For cysteamine, the conformational space (at the B3LYP-GD3(BJ)/Def2-TZVP level) and the measurement and analysis of its rotational spectra in the 6 - 18 and 59.6 - 120 GHz are reported. The hyperfine structure of the rotational spectra was observed and analyzed for the first time. Based on the measured spectra, a search of the different conformers of cysteamine was performed toward the G+0.693-0.027 molecular cloud. We computed the upper limit of the ratio of ethanolamine to cysteamine, which is >0.8−5.3. For the cysteamine monohydrate, the conformational space was explored (at the B3LYP-GD3(BJ)/Def2-TZVP level). The rotational spectra of the cysteamine monohydrate complex have been assigned in the frequency range 6 – 18.5 GHz. The global minimum, Conf A1, was the only observed one. The 34S isotopologue of Conf A1 was observed in natural abundance, while 18O isotopologue was detected by introducing the H218O. In this conformer, the water molecule plays both proton donor and acceptor roles, forming a OHw···N interaction, a SH···Ow interaction and a CH···Ow interaction. The conformational space of 1-thioglycerol has been characterized by quantum mechanical calculation and its rotational spectrum has been recorded and analyzed in the frequency range 59.6 - 78.4 GHz. The global minimum of 1-thioglycerol is gTg’Gg’ and were detected together with gTg’Tg and gGgG’g, while the two detected conformers are g’G’gGg’ and tGgGg. The high-resolution rotational spectrum of 1-propanethiol in the frequency range 59.6 – 78.4 GHz was measured. Two conformers, Gg and Tg, were observed and their spectra were analyzed. Considering the overall conformational space calculated at the B3LYP-GD3(BJ)/Def2-TZVP level they are among the lowest energy conformers.
Resumo:
The Ph chromosome is the most frequent cytogenetic aberration associated with adult ALL and it represents the single most significant adverse prognostic marker. Despite imatinib has led to significant improvements in the treatment of patients with Ph+ ALL, in the majority of cases resistance developed quickly and disease progressed. Some mechanisms of resistance have been widely described but the full knowledge of contributing factors, driving both the disease and resistance, remains to be defined. The observation of rapid development of lymphoblastic leukemia in mice expressing altered Ikaros (Ik) isoforms represented the background of this study. Ikaros is a zinc finger transcription factor required for normal hemopoietic differentiation and proliferation, particularly in the lymphoid lineages. By means of alternative splicing, Ikaros encodes several proteins that differ in their abilities to bind to a consensus DNA-binding site. Shorter, DNA nonbinding isoforms exert a dominant negative effect, inhibiting the ability of longer heterodimer partners to bind DNA. The differential expression pattern of Ik isoforms in Ph+ ALL patients was analyzed in order to determine if molecular abnormalities involving the Ik gene could associate with resistance to imatinib and dasatinib. Bone marrow and peripheral blood samples from 46 adult patients (median age 55 yrs, 18-76) with Ph+ ALL at diagnosis and during treatment with imatinib (16 pts) or dasatinib (30 pts) were collected. We set up a fast, high-throughput method based on capillary electrophoresis technology to detect and quantify splice variants. 41% Ph+ ALL patients expressed high levels of the non DNA-binding dominant negative Ik6 isoform lacking critical N-terminal zinc-fingers which display abnormal subcellular compartmentalization pattern. Nuclear extracts from patients expressed Ik6 failed to bind DNA in mobility shift assay using a DNA probe containing an Ikaros-specific DNA binding sequence. In 59% Ph+ ALL patients there was the coexistence in the same PCR sample and at the same time of many splice variants corresponded to Ik1, Ik2, Ik4, Ik4A, Ik5A, Ik6, Ik6 and Ik8 isoforms. In these patients aberrant full-length Ikaros isoforms in Ph+ ALL characterized by a 60-bp insertion immediately downstream of exon 3 and a recurring 30-bp in-frame deletion at the end of exon 7 involving most frequently the Ik2, Ik4 isoforms were also identified. Both the insertion and deletion were due to the selection of alternative splice donor and acceptor sites. The molecular monitoring of minimal residual disease showed for the first time in vivo that the Ik6 expression strongly correlated with the BCR-ABL transcript levels suggesting that this alteration could depend on the Bcr-Abl activity. Patient-derived leukaemia cells expressed dominant-negative Ik6 at diagnosis and at the time of relapse, but never during remission. In order to mechanistically demonstrated whether in vitro the overexpression of Ik6 impairs the response to tyrosine kinase inhibitors (TKIs) and contributes to resistance, an imatinib-sensitive Ik6-negative Ph+ ALL cell line (SUP-B15) was transfected with the complete Ik6 DNA coding sequence. The expression of Ik6 strongly increased proliferation and inhibited apoptosis in TKI sensitive cells establishing a previously unknown link between specific molecular defects that involve the Ikaros gene and the resistance to TKIs in Ph+ ALL patients. Amplification and genomic sequence analysis of the exon splice junction regions showed the presence of 2 single nucleotide polymorphisms (SNPs): rs10251980 [A/G] in the exon2/3 splice junction and of rs10262731 [A/G] in the exon 7/8 splice junction in 50% and 36% of patients, respectively. A variant of the rs11329346 [-/C], in 16% of patients was also found. Other two different single nucleotide substitutions not recognized as SNP were observed. Some mutations were predicted by computational analyses (RESCUE approach) to alter cis-splicing elements. In conclusion, these findings demonstrated that the post-transcriptional regulation of alternative splicing of Ikaros gene is defective in the majority of Ph+ ALL patients treated with TKIs. The overexpression of Ik6 blocking B-cell differentiation could contribute to resistance opening a time frame, during which leukaemia cells acquire secondary transforming events that confer definitive resistance to imatinib and dasatinib.
Resumo:
Supramolecular self-assembly represents a key technology for the spontaneous construction of nanoarchitectures and for the fabrication of materials with enhanced physical and chemical properties. In addition, a significant asset of supramolecular self-assemblies rests on their reversible formation, thanks to the kinetic lability of their non-covalent interactions. This dynamic nature can be exploited for the development of “self-healing” and “smart” materials towards the tuning of their functional properties upon various external factors. One particular intriguing objective in the field is to reach a high level of control over the shape and size of the supramolecular architectures, in order to produce well-defined functional nanostructures by rational design. In this direction, many investigations have been pursued toward the construction of self-assembled objects from numerous low-molecular weight scaffolds, for instance by exploiting multiple directional hydrogen-bonding interactions. In particular, nucleobases have been used as supramolecular synthons as a result of their efficiency to code for non-covalent interaction motifs. Among nucleobases, guanine represents the most versatile one, because of its different H-bond donor and acceptor sites which display self-complementary patterns of interactions. Interestingly, and depending on the environmental conditions, guanosine derivatives can form various types of structures. Most of the supramolecular architectures reported in this Thesis from guanosine derivatives require the presence of a cation which stabilizes, via dipole-ion interactions, the macrocyclic G-quartet that can, in turn, stack in columnar G-quadruplex arrangements. In addition, in absence of cations, guanosine can polymerize via hydrogen bonding to give a variety of supramolecular networks including linear ribbons. This complex supramolecular behavior confers to the guanine-guanine interactions their upper interest among all the homonucleobases studied. They have been subjected to intense investigations in various areas ranging from structural biology and medicinal chemistry – guanine-rich sequences are abundant in telomeric ends of chromosomes and promoter regions of DNA, and are capable of forming G-quartet based structures– to material science and nanotechnology. This Thesis, organized into five Chapters, describes mainly some recent advances in the form and function provided by self-assembly of guanine based systems. More generally, Chapter 4 will focus on the construction of supramolecular self-assemblies whose self-assembling process and self-assembled architectures can be controlled by light as external stimulus. Chapter 1 will describe some of the many recent studies of G-quartets in the general area of nanoscience. Natural G- quadruplexes can be useful motifs to build new structures and biomaterials such as self-assembled nanomachines, biosensors, therapeutic aptamer and catalysts. In Chapters 2-4 it is pointed out the core concept held in this PhD Thesis, i.e. the supramolecular organization of lipophilic guanosine derivatives with photo or chemical addressability. Chapter 2 will mainly focus on the use of cation-templated guanosine derivatives as a potential scaffold for designing functional materials with tailored physical properties, showing a new way to control the bottom-up realization of well-defined nanoarchitectures. In section 2.6.7, the self-assembly properties of compound 28a may be considered an example of open-shell moieties ordered by a supramolecular guanosine architecture showing a new (magnetic) property. Chapter 3 will report on ribbon-like structures, supramolecular architectures formed by guanosine derivatives that may be of interest for the fabrication of molecular nanowires within the framework of future molecular electronic applications. In section 3.4 we investigate the supramolecular polymerizations of derivatives dG 1 and G 30 by light scattering technique and TEM experiments. The obtained data reveal the presence of several levels of organization due to the hierarchical self-assembly of the guanosine units in ribbons that in turn aggregate in fibrillar or lamellar soft structures. The elucidation of these structures furnishes an explanation to the physical behaviour of guanosine units which display organogelator properties. Chapter 4 will describe photoresponsive self-assembling systems. Numerous research examples have demonstrated that the use of photochromic molecules in supramolecular self-assemblies is the most reasonable method to noninvasively manipulate their degree of aggregation and supramolecular architectures. In section 4.4 we report on the photocontrolled self-assembly of modified guanosine nucleobase E-42: by the introduction of a photoactive moiety at C8 it is possible to operate a photocontrol over the self-assembly of the molecule, where the existence of G-quartets can be alternately switched on and off. In section 4.5 we focus on the use of cyclodextrins as photoresponsive host-guest assemblies: αCD–azobenzene conjugates 47-48 (section 4.5.3) are synthesized in order to obtain a photoresponsive system exhibiting a fine photocontrollable degree of aggregation and self-assembled architecture. Finally, Chapter 5 contains the experimental protocols used for the research described in Chapters 2-4.
Resumo:
In the last decades, organic semiconductors have attracted attention due to their possible employment in solution-processed optoelectronic and electronic devices. One of the advantages of solution processing is the possibility to process into flexible substrates at low cost. Organic molecular materials tend to form polymorphs, which can exhibit very different properties. In most cases, the control of the crystal structure is decisive to maximize the performance of the final device. Although organic electronics have progressed a lot, n-type organic semiconductors still lag behind p-type, presenting challenges such as air instability and poor solubility. NDI derivatives are promising candidates for applications in organic electronics due to their characteristics. Recently, the structure-properties relationship and the polymorphism of these molecules have gained attention. In the first part of this thesis, NDI-C6 thermal behavior was extensively explored which revealed two different behaviors depending on the annealing process. This study allowed to define the stability ranking of the NDI-C6 bulk forms and to determine the crystal structure of Form γ at 54°C. Additionally, the polymorphic and thermal behavior of thin films of NDI-C6 was also explored. It was possible to isolate pure Form α, Form β, Form γ and a new metastable Form ε. It was also possible to determine the stability ranking of the phases in thin films. OFETs were fabricated having different polymorphs as active layer, unfortunately the performance was not ideal. During the second part of this thesis, core-chlorinated NDIs with fluoroalkyl chains were studied. Initially, the focus was on the polymorphism of CF3-NDI that revealed a solvate form with a very interesting molecular arrangement suggesting the possibility to form charge transfer co-crystals. In the last part of the thesis, the synthesis and characterization of CT co-crystal with different NDI derivatives, and acceptor and as donor BTBT and ditBu-BTBT were explored.
Resumo:
Leaf rust caused by Puccinia triticina is a serious disease of durum wheat (Triticum durum) worldwide. However, genetic and molecular mapping studies aimed at characterizing leaf rust resistance genes in durum wheat have been only recently undertaken. The Italian durum wheat cv. Creso shows a high level of resistance to P. triticina that has been considered durable and that appears to be due to a combination of a single dominant gene and one or more additional factors conferring partial resistance. In this study, the genetic basis of leaf rust resistance carried by Creso was investigated using 176 recombinant inbred lines (RILs) from the cross between the cv. Colosseo (C, leaf rust resistance donor) and Lloyd (L, susceptible parent). Colosseo is a cv. directly related to Creso with the leaf rust resistance phenotype inherited from Creso, and was considered as resistance donor because of its better adaptation to local (Emilia Romagna, Italy) cultivation environment. RILs have been artificially inoculated with a mixture of 16 Italian P. triticina isolates that were characterized for virulence to seedlings of 22 common wheat cv. Thatcher isolines each carrying a different leaf rust resistance gene, and for molecular genotypes at 15 simple sequence repeat (SSR) loci, in order to determine their specialization with regard to the host species. The characterization of the leaf rust isolates was conducted at the Cereal Disease Laboratory of the University of Minnesota (St. Paul, USA) (Chapter 2). A genetic linkage map was constructed using segregation data from the population of 176 RILs from the cross CL. A total of 662 loci, including 162 simple sequence repeats (SSRs) and 500 Diversity Arrays Technology markers (DArTs), were analyzed by means of the package EasyMap 0.1. The integrated SSR-DArT linkage map consisted of 554 loci (162 SSR and 392 DArT markers) grouped into 19 linkage blocks with an average marker density of 5.7 cM/marker. The final map spanned a total of 2022 cM, which correspond to a tetraploid genome (AABB) coverage of ca. 77% (Chapter 3). The RIL population was phenotyped for their resistance to leaf rust under artificial inoculation in 2006; the percentage of infected leaf area (LRS, leaf rust susceptibility) was evaluated at three stages through the disease developmental cycle and the area under disease progress curve (AUDPC) was then calculated. The response at the seedling stage (infection type, IT) was also investigated. QTL analysis was carried out by means of the Composite Interval Mapping method based on a selection of markers from the CL map. A major QTL (QLr.ubo-7B.2) for leaf rust resistance controlling both the seedling and the adult plant response, was mapped on the distal region of chromosome arm 7BL (deletion bin 7BL10-0.78-1.00), in a gene-dense region known to carry several genes/QTLs for resistance to rusts and other major cereal fungal diseases in wheat and barley. QLr.ubo-7B.2 was identified within a supporting interval of ca. 5 cM tightly associated with three SSR markers (Xbarc340.2, Xgwm146 e Xgwm344.2), and showed an R2 and an LOD peak value for the AUDPC equal to 72.9% an 44.5, respectively. Three additional minor QTLs were also detected (QLr.ubo-7B.1 on chr. 7BS; QLr.ubo-2A on chr. 2AL and QLr.ubo-3A on chr. 3AS) (Chapter 4). The presence of the major QTL (QLr.ubo-7B.2) was validated by a linkage disequilibrium (LD)-based test using field data from two different plant materials: i) a set of 62 advanced lines from multiple crosses involving Creso and his directly related resistance derivates Colosseo and Plinio, and ii) a panel of 164 elite durum wheat accessions representative of the major durum breeding program of the Mediterranean basin. Lines and accessions were phenotyped for leaf rust resistance under artificial inoculation in two different field trials carried out at Argelato (BO, Italy) in 2006 and 2007; the durum elite accessions were also evaluated in two additional field experiments in Obregon (Messico; 2007 and 2008) and in a green-house experiment (seedling resistance) at the Cereal Disease Laboratory (St. Paul, USA, 2008). The molecular characterization involved 14 SSR markers mapping on the 7BL chromosome region found to harbour the major QTL. Association analysis was then performed with a mixed-linear-model approach. Results confirmed the presence of a major QTL for leaf rust resistance, both at adult plant and at seedling stage, located between markers Xbarc340.2, Xgwm146 and Xgwm344.2, in an interval that coincides with the supporting interval (LOD-2) of QLr.ubo-7B.2 as resulted from the RIL QTL analysis. (Chapter 5). The identification and mapping of the major QTL associated to the durable leaf rust resistance carried by Creso, together with the identification of the associated SSR markers, will enhance the selection efficiency in durum wheat breeding programs (MAS, Marker Assisted Selection) and will accelerate the release of cvs. with durable resistance through marker-assisted pyramiding of the tagged resistance genes/QTLs most effective against wheat fungal pathogens.
Resumo:
In the last few decades, scientific evidence has pointed out the health-beneficial effects of phenolic compounds in foods, including a decrease in risk of developing degenerative and chronic diseases, known to be caused by oxidative stress. In this frame can be inserted research carried out during my PhD thesis, which concerns the phytochemical investigation of phenolic composition in sweet cherries (Prunus avium L.), apple fruits (Malus domestica L.) and quinoa seeds (Chenopodium quinoa Willd.). The first project was focused on the investigation of phytochemical profile and nutraceutical value of fruits of new sweet cherry cultivars. Their phenolic profile and antioxidant activity were investigated and compared with those of commonly commercialized cultivars. Their nutraceutical value was evaluated in terms of antioxidant/neuroprotective capacity in neuron-like SH-SY5Y cells, in order to investigate their ability to counteract the oxidative stress and/or neurodegeneration process The second project was focused on phytochemical analysis of phenolic compounds in apples of ancient cultivars with the aim of selecting the most diverse cultivars, that will then be assayed for their anti-carcinogenic and anti-proliferative activities against the hepato-biliary and pancreatic tumours. The third project was focused on the analysis of polyphenolic pattern of seeds of two quinoa varieties grown at different latitudes. Analysis of phenolic profile and in vitro antioxidant activity of seed extracts both in their free and soluble-conjugated forms, showed that the accumulation of some classes of flavonoids is strictly regulated by environmental factors, even though the overall antioxidant capacity does not differ in quinoa Regalona grown in Chile and Italy. During the internship period carried out at the Department of Organic Chemistry at Universidad Autónoma de Madrid (UAM), it was achieved the isolation of two pentacyclic triterpenoids, from an endemic Peruvian plant, Jatropha macrantha Müll. Arg., with bio-guided fractionation technique.
Resumo:
Kidney transplantation is the best treatment option for the restoration of excretory and endocrine kidney function in patients with end-stage renal disease. The success of the transplant is linked to the genetic compatibility between donor and recipient, and upon progress in surgery and immunosuppressive therapy. Numerous studies have established the importance of innate immunity in transplantation tolerance, in particular natural killer (NK) cells represent a population of cells involved in defense against infectious agents and tumor cells. NK cells express on their surface the Killer-cell Immunoglobulin-like Receptors (KIR) which, by recognizing and binding to MHC class I antigens, prevent the killing of autologous cells. In solid organ transplantation context, and in particular the kidney, recent studies show some correlation between the incompatibility KIR / HLA and outcome of transplantation so as to represent an interesting perspective, especially as regards setting of immunosuppressive therapy. The purpose of this study was therefore to assess whether the incompatibility between recipient KIR receptors and HLA class I ligands of the donor could be a useful predictor in order to improve the survival of the transplanted kidney and also to select patients who might benefit of a reduced regimen. One hundred and thirteen renal transplant patients from 1999 to 2005 were enrolled. Genomic DNA was extracted for each of them and their donors and genotyping of HLA A, B, C and 14 KIR genes was carried out. Data analysis was conducted on two case-control studies: one aimed at assessing the outcome of acute rejection and the other to assess the long term transplant outcome. The results showed that two genes, KIR2DS1 and KIR3DS1, are associated with the development of acute rejection (p = 0.02 and p = 0.05, respectively). The presence of the KIR2DS3 gene is associated with a better performance of serum creatinine and glomerular filtration rate (MDRD) over time (4 and 5 years after transplantation, p <0.05), while in the presence of ligand, the serum creatinine and MDRD trend seems to get worse in the long term. The analysis performed on the population, according to whether there was deterioration of renal function or not in the long term, showed that the absence of the KIR2DL1 gene is strongly associated with an increase of 20% of the creatinine value at 5 years, with a relative risk to having a greater creatinine level than the median 5-year equal to 2.7 95% (95% CI: 1.7788 - 2.6631). Finally, the presence of a kidney resulting negative for HLA-A3 / A11, compared to a positive result, in patients with KIR3DL2, showed a relative risk of having a serum creatinine above the median at 5 years after transplantation of 0.6609 (95% CI: 0.4529 -0.9643), suggesting a protective effect given to the absence of this ligand.
Resumo:
The current issue of the resource of energy combined with the tendency to give a green footprint to our lifestyle have prompted the research to focus the attention on alternative sources with great strides in the optimization of polymeric photovoltaic devices. The research work described in this dissertation consists in the study of different semiconducting π-conjugated materials based on polythiophenes (Chapter I). In detail, the GRIM polymerization was deepened defining the synthetic conditions to obtain regioregular poly(3-alkylthiophene) (Chapter II). Since the use of symmetrical monomers functionalized with oxygen atom(s) allows to adopt easy synthesis leading to performing materials, disubstituted poly(3,4-dialkoxythiophene)s were successfully prepared, characterized and tested as photoactive materials in solar cells (Chapter III). A “green” resource of energy should be employed through sustainable devices and, for this purpose, the research work was continued on the synthesis of thiophene derivatives soluble in eco-friendly solvents. To make this possible, the photoactive layer was completely tailored starting from the electron-acceptor material. A fullerene derivative soluble in alcohols was successfully synthetized and adopted for the realization of the new devices (Chapter IV). New water/alcohol soluble electron-donor materials with different functional groups were prepared and their properties were compared (Chapter V). Once found the best ionic functional group, a new double-cable material was synthetized optimizing the surface area between the different materials (Chapter VI). Finally, other water/alcohol soluble materials were synthetized, characterized and used as cathode interlayers in eco-friendly devices (Chapter VII). In this work, all prepared materials were characterized by spectroscopy analyses, gel permeation chromatography and thermal analyses. Cyclic voltammetry, X-ray diffraction, atomic force microscopy and external quantum efficiency were used to investigate some peculiar aspects.
Resumo:
Self-assembly relies on the association of pre-programmed building blocks through non-covalent interactions to give complex supramolecular architectures. Previous studies provided evidence for the unique self-assembly properties of semi-synthetic lipophilic guanosine derivatives which can sequestrate ions from an aqueous phase, carry them into an organic phase where they promote the generation of well-defined supramolecular assemblies. In the presence of cations lipophilic guanosines form columnar aggregates while in their absence they generate supramolecular ribbons. The aim of this thesis has been the synthesis of guanine derivatives, in particular N9-alkylated guanines and a guanosine functionalized as a perchlorotriphenylmetil moiety (Gace-a-HPTM) in order to observe their supramolecular behaviour in the absence of sugar (ribose or deoxyribose) and in the presence of a bulky and chiral substituent respectively. By using guanine instead of guanosine, while maintaining all the hydrogen bond acceptor and donor groups required for supramolecular aggregation, the steric hindrance to supramolecular aggregation is notably reduced because (i.e. guanines with groups in N9 different from sugar are expected to have a greatest conformational freedom even in presence of bulky groups in C8). Supramolecular self-assembly of these derivatives has been accomplished in solutions by NMR and CD spectroscopy and on surface by STM technique. In analogy with other guanosine derivatives, also N9-substituted guanines and GAceHPTM form either ribbon-like aggregates or cation-templated G-quartet based columnar structures.
Resumo:
Molecular materials are made by the assembly of specifically designed molecules to obtain bulk structures with desired solid-state properties, enabling the development of materials with tunable chemical and physical properties. These properties result from the interplay of intra-molecular constituents and weak intermolecular interactions. Thus, small changes in individual molecular and electronic structure can substantially change the properties of the material in bulk. The purpose of this dissertation is, thus, to discuss and to contribute to the structure-property relationships governing the electronic, optical and charge transport properties of organic molecular materials through theoretical and computational studies. In particular, the main focus is on the interplay of intra-molecular properties and inter-molecular interactions in organic molecular materials. In my three-years of research activity, I have focused on three major areas: 1) the investigation of isolated-molecule properties for the class of conjugated chromophores displaying diradical character which are building blocks for promising functional materials; 2) the determination of intra- and intermolecular parameters governing charge transport in molecular materials and, 3) the development and application of diabatization procedures for the analysis of exciton states in molecular aggregates. The properties of diradicaloids are extensively studied both regarding their ground state (diradical character, aromatic vs quinoidal structures, spin dynamics, etc.) and the low-lying singlet excited states including the elusive double-exciton state. The efficiency of charge transport, for specific classes of organic semiconductors (including diradicaloids), is investigated by combining the effects of intra-molecular reorganization energy, inter-molecular electronic coupling and crystal packing. Finally, protocols aimed at unravelling the nature of exciton states are introduced and applied to different molecular aggregates. The role of intermolecular interactions and charge transfer contributions in determining the exciton state character and in modulating the H- to J- aggregation is also highlighted.
Resumo:
Charge transport in conjugated polymers as well as in bulk-heterojunction (BHJ) solar cells made of blends between conjugated polymers, as electron-donors (D), and fullerenes, as electron-acceptors (A), has been investigated. It is shown how charge carrier mobility of a series of anthracene-containing poly(p-phenylene-ethynylene)-alt-poly(p-phenylene-vinylene)s (AnE-PVs) is highly dependent on the lateral chain of the polymers, on a moderate variation of the macromolecular parameters (molecular weight and polydispersity), and on the processing conditions of the films. For the first time, the good ambipolar transport properties of this relevant class of conjugated polymers have been demonstrated, consistent with the high delocalization of both the frontier molecular orbitals. Charge transport is one of the key parameters in the operation of BHJ solar cells and depends both on charge carrier mobility in pristine materials and on the nanoscale morphology of the D/A blend, as proved by the results here reported. A straight correlation between hole mobility in pristine AnE-PVs and the fill factor of the related solar cells has been found. The great impact of charge transport for the performance of BHJ solar cells is clearly demonstrated by the results obtained on BHJ solar cells made of neat-C70, instead of the common soluble fullerene derivatives (PCBM or PC70BM). The investigation of neat-C70 solar cells was motivated by the extremely low cost of non-functionalized fullerenes, compared with that of their soluble derivatives (about one-tenth). For these cells, an improper morphology of the blend leads to a deterioration of charge carrier mobility, which, in turn, increases charge carrier recombination. Thanks to the appropriate choice of the donor component, solar cells made of neat-C70 exhibiting an efficiency of 4.22% have been realized, with an efficiency loss of just 12% with respect to the counterpart made with costly PC70BM.
Resumo:
Interfacing materials with different intrinsic chemical-physical characteristics allows for the generation of a new system with multifunctional features. Here, this original concept is implemented for tailoring the functional properties of bi-dimensional black phosphorus (2D bP or phosphorene) and organic light-emitting transistors (OLETs). Phosphorene is highly reactive under atmospheric conditions and its small-area/lab-scale deposition techniques have hampered the introduction of this material in real-world applications so far. The protection of 2D bP against the oxygen by means of functionalization with alkane molecules and pyrene derivatives, showed long-term stability with respect to the bare 2D bP by avoiding remarkable oxidation up to 6 months, paving the way towards ultra-sensitive oxygen chemo-sensors. A new approach of deposition-precipitation heterogeneous reaction was developed to decorate 2D bP with Au nanoparticles (NP)s, obtaining a “stabilizer-free” that may broaden the possible applications of the 2D bP/Au NPs interface in catalysis and biodiagnostics. Finally, 2D bP was deposited by electrospray technique, obtaining oxidized-phosphorous flakes as wide as hundreds of µm2 and providing for the first time a phosphorous-based bidimensional system responsive to electromechanical stimuli. The second part of the thesis focuses on the study of organic heterostructures in ambipolar OLET devices, intriguing optoelectronic devices that couple the micro-scaled light-emission with electrical switching. Initially, an ambipolar single-layer OLET based on a multifunctional organic semiconductor, is presented. The bias-depending light-emission shifted within the transistor channel, as expected in well-balanced ambipolar OLETs. However, the emitted optical power of the single layer-based device was unsatisfactory. To improve optoelectronic performance of the device, a multilayer organic architecture based on hole-transporting semiconductor, emissive donor-acceptor blend and electron-transporting semiconductor was optimized. We showed that the introduction of a suitable electron-injecting layer at the interface between the electron-transporting and light-emission layers may enable a ≈ 2× improvement of efficiency at reduced applied bias.
Resumo:
Over the course of evolution, Nature has elegantly learned to use light to drive chemical reactions. On the other hand, humans have only recently started learning how to play with this powerful tool to carry out chemical transformations. In particular, a step forward was possible thanks to molecules and materials that can absorb light and trigger a series of processes that can drive chemical reactions. However, scarce elements are extensively employed in the design of most of these compounds and considerations on their scarcity and toxicity have sparked interest on alternatives based on earth-abundant elements. In this framework, the focus of this thesis has been the development and employment of heavy-metal free chromophores and of earth-abundant oxides. The first chapter regards the functionalization of boron-dipyrromethenes (BODIPYs) so as to allow access to their triplet excited state and tune their redox potentials, which was achieved thanks to the design of orthogonal donor-acceptor dyads. The BODIPY dyads were used to promote a photoredox reaction, and the mechanism of the reaction was clarified. In the second chapter, organic chromophores that display thermally-activated delayed fluorescence (TADF) were studied. These were used to perform enantioselective photoredox reactions, and a mechanistic investigation allowed to elucidate the fate of these photosensitizers in the reaction. Thanks to their stronger reducing power, it was possible to demonstrate the employability of TADF dyes in artificial photosynthesis, as well. Last, the oxidation of biomass-derived compounds was studied in a photoelectrochemical cell. For this purpose, hematite photoanodes were synthesized in collaboration with Prof. Caramori’s group at the University of Ferrara (Italy) and they were tested in the presence of a redox mediator. In addition to this, the possibility of repurposing a copper(II) water oxidation catalyst for the oxidation of biomass was investigated in collaboration with Prof. Llobet’s group at ICIQ (Tarragona, Spain).