3 resultados para Documentation, Photography, Wound and Injury
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The integration of quantitative data from movement analysis technologies is reshaping the analysis of athletes’ performances and injury mitigation, e.g., anterior cruciate ligament (ACL) rupture. Most of the movement assessments are performed in laboratory environments. Recent progress provides the chance to shift the paradigm to a more ecological approach with sport-specific elements and a closer examination of “real” movement patterns associated with performance and (ACL) injury risk. The present PhD thesis aimed at investigating the on-field motion patterns related to performance and injury prevention in young football players. The objectives of the thesis were: (I) in-lab measures of high-dynamics movements were used to validate wearable inertial sensors technology; (II) in-laboratory and on-field agility movement tasks were compared to inspect the effect of football-specific environment; (III) on-field analysis was conducted to challenge wearable sensors technology in the assessment of dangerous movement patterns towards the ACL rupture; (IV) an overview of technologies that could shape present and future assessment of ACL injury risk in daily practice was presented. The validity of wearables in the assessment of high-dynamics movements was confirmed. Relevant differences emerged between the movements performed in a laboratory setting and on the football pitch, supporting the inclusion of an ecological dynamics approach in preventive protocols. The on-field analysis of football-specific movement tasks demonstrated good reliability of wearable sensors and the presence of residual dangerous patterns in the injured players. A tool to inspect at-risk movement patterns on the field through objective measurements was presented. It discussed how potential alternatives to wearable inertial sensors embrace artificial intelligence and closer collaboration between clinical and technical expertise. The present thesis was meant to contribute to setting the basis for data-driven prevention protocols. A deeper comprehension of injury-related principles and counteractions will contribute to preserving athletes’ careers and health over time.
Resumo:
Brown rot caused by Monilinia laxa and Monilinia fructigena is considered one of the most important diseases affecting Prunus species. Although some losses can result from the rotten fruits in the orchard, most of the damage is caused to fruits during the post-harvest phase. Several studies reported that brown rot incidence during fruit development highly varies; it was found that at a period corresponding to the the pit hardening stage, fruit susceptibility drastically decreases, to be quickly restored afterwards. However the molecular basis of this phenomenon is still not well understood. Furthermore, no difference in the rot incidence was found between wound and un-wound fruits, suggesting that resistance associated more to a specifc biochemical response of the fruit, rather than to a higher mechanical resistance. So far, the interaction Monilinia-peach was analyzed through chemical approaches. In this study, a bio-molecular approach was undertaken in order to reveal alteration in gene expression associated to the variation of susceptibility. In this thesis three different methods for gene expression analysis were used to analyze the alterations in gene expression occurring in peach fruits during the pit hardening stage, in a period encompassing the temporary change in Monilinia susceptibility: real time PCR, microarray and cDNA AFLP techniques. In 2005, peach fruits (cv.K2) were weekly harvested during a 19-week long-period, starting from the fourth week after full bloom, until full maturity. At each sampling time, three replicates of 5 fruits each were dipped in the M.laxa conidial suspension or in distilled water, as negative control. The fruits were maintained at room temperature for 3 hours; afterwards, they were peeled with a scalpel; the peel was immediately frozen in liquid nitrogen and transferred to -80 °C until use. The degree of susceptibility of peach fruit to the pathogen was determined on 3 replicates of 20 fruits each, as percentage of infected fruits, after one week at 20 °C. Real time PCR analysis was performed to study the variation in expression of those genes encoding for the enzymes of the phenylpropanoid pathway (phenylalanine ammonia lyase (PAL), chalcone synthase (CHS), cinnamate 4-hydroxylase (C4H), leucoanthocyanidine reductase (LAR), hydroxycinnamoyl CoA quinate hydroxycinnamoyl transferase (HQT) and of the jasmonate pathway, such as lipoxygenase (LOX), both involved in the production of important defense compounds. Alteration in gene expression was monitored on fruit samples of a period encompassing the pit hardening stage and the corresponding temporary resistance to M.laxa infections, weekly, from the 6thto the 12th week after full bloom (AFB) inoculated with M. laxa or mock-inoculated. The data suggest a critical change in the expression level of the phenylpropanoid pathway from the 7th to the 8th week AFB; such change could be directly physiologically associated to the peach growth and it could indirectly determine the decrease of susceptibility of peach fruit to Monilinia rot during the subsequent weeks. To investigate on the transcriptome variation underneath the temporary loss of susceptibility of peach fruits to Monilinia rot, the microarray and the cDNA AFLP techniques were used. The samples harvested on the 8th week AFB (named S, for susceptible ones) and on the 12th week AFB (named R, for resistant ones) were compared, both inoculated or mock-inoculated. The microarray experiments were carried out at the University of Padua (Dept. of Environmental Agronomy and Crop Science), using the μPEACH1.0 microarray together with the suited protocols. The analysis showed that 30 genes (corresponding to the 0.6% of the total sequences (4806) contained in the μPeach1.0 microarray) were found up-regulated and 31 ( 0.6%) down regulated in RH vs. SH fruits. On the other hand, 20 genes (0.4%) were shown to be up-regulated and 13 (0.3%) down-regulated in the RI vs. SI fruit. No genes were found differentially expressed in the mock-inoculated resistant fruits (RH) vs. the inoculated resistant ones (RI). Among the up-regulated genes an ATP sulfurylase, an heat shock protein 70, the major allergen Pru P1, an harpin inducing protein and S-adenosylmethionine decarboxylase were found, conversely among the down-regulated ones, cinnamyl alcohol dehydrogenase, an histidine- containing phosphotransfer protein and the ferritin were found. The microarray experimental results and the data indirectly derived, were tested by Real Time PCR analysis. cDNA AFLP analysis was also performed on the same samples. 339 transcript derived fragments considered significant for Monilinia resistance, were selected, sequenced and classified. Genes potentially involved in cell rescue and defence were well represented (8%); several genes (12.1%) involved in the protein folding, post-transductional modification and genes (9.2%) involved in cellular transport were also found. A further 10.3% of genes were classified as involved in the metabolism of aminoacid, carbohydrate and fatty acid. On the other hand, genes involved in the protein synthesis (5.7%) and in signal transduction and communication (5.7%) were found. Among the most interesting genes found differentially expressed between susceptible and resistant fruits, genes encoding for pathogenesis related (PR) proteins were found. To investigate on the association of Monilinia resistance and PR biological function, the major allergen Pru P1 (GenBank accession AM493970) and its isoform (here named Pru P2), were expressed in heterologous system and in vitro assayed for their anti-microbial activity. The ribonuclease activity of the recombinant Pru P1 and Pru P2 proteins was assayed against peach total RNA. As the other PR10 proteins, they showed a ribonucleolytic activity, that could be important to contrast pathogen penetration. Moreover Pru P1 and Pru P2 recombinant proteins were checked for direct antimicrobial activity. No inhibitory effect of Pru P1 or Pru P2 was detected against the selected fungi.
Resumo:
The main contribution of this thesis is the proposal of novel strategies for the selection of parameters arising in variational models employed for the solution of inverse problems with data corrupted by Poisson noise. In light of the importance of using a significantly small dose of X-rays in Computed Tomography (CT), and its need of using advanced techniques to reconstruct the objects due to the high level of noise in the data, we will focus on parameter selection principles especially for low photon-counts, i.e. low dose Computed Tomography. For completeness, since such strategies can be adopted for various scenarios where the noise in the data typically follows a Poisson distribution, we will show their performance for other applications such as photography, astronomical and microscopy imaging. More specifically, in the first part of the thesis we will focus on low dose CT data corrupted only by Poisson noise by extending automatic selection strategies designed for Gaussian noise and improving the few existing ones for Poisson. The new approaches will show to outperform the state-of-the-art competitors especially in the low-counting regime. Moreover, we will propose to extend the best performing strategy to the hard task of multi-parameter selection showing promising results. Finally, in the last part of the thesis, we will introduce the problem of material decomposition for hyperspectral CT, which data encodes information of how different materials in the target attenuate X-rays in different ways according to the specific energy. We will conduct a preliminary comparative study to obtain accurate material decomposition starting from few noisy projection data.