10 resultados para Distribution network planning
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This thesis is focused on Smart Grid applications in medium voltage distribution networks. For the development of new applications it appears useful the availability of simulation tools able to model dynamic behavior of both the power system and the communication network. Such a co-simulation environment would allow the assessment of the feasibility of using a given network technology to support communication-based Smart Grid control schemes on an existing segment of the electrical grid and to determine the range of control schemes that different communications technologies can support. For this reason, is presented a co-simulation platform that has been built by linking the Electromagnetic Transients Program Simulator (EMTP v3.0) with a Telecommunication Network Simulator (OPNET-Riverbed v18.0). The simulator is used to design and analyze a coordinate use of Distributed Energy Resources (DERs) for the voltage/var control (VVC) in distribution network. This thesis is focused control structure based on the use of phase measurement units (PMUs). In order to limit the required reinforcements of the communication infrastructures currently adopted by Distribution Network Operators (DNOs), the study is focused on leader-less MAS schemes that do not assign special coordinating rules to specific agents. Leader-less MAS are expected to produce more uniform communication traffic than centralized approaches that include a moderator agent. Moreover, leader-less MAS are expected to be less affected by limitations and constraint of some communication links. The developed co-simulator has allowed the definition of specific countermeasures against the limitations of the communication network, with particular reference to the latency and loss and information, for both the case of wired and wireless communication networks. Moreover, the co-simulation platform has bee also coupled with a mobility simulator in order to study specific countermeasures against the negative effects on the medium voltage/current distribution network caused by the concurrent connection of electric vehicles.
Resumo:
L’approccio innovativo di questa tesi alla pianificazione ciclabile consiste nell’integrare le linee guida per la redazione di un biciplan con aspetti, metodologie e strumenti nuovi, per rendere più efficace la programmazione di interventi. I limiti del biciplan risiedono nella fase di pianificazione e di monitoraggio, quindi, nel 1° capitolo, vengono esaminate le differenze esistenti tra la normativa americana (AASHTO) e quella italiana (D.P.R. 557/99). Nel 2° capitolo vengono analizzati gli indicatori usati nella fase di monitoraggio e la loro evoluzione fino alla definizione degli attuali indici per la determinazione del LOS delle infrastrutture ciclabili: BLOS e BCI. L’analisi è integrata con le nuove applicazioni di questi indici e con lo studio del LOS de HCM 2010. BCI e BISI sono stati applicati alla rete di Bologna per risolvere problemi di pianificazione e per capire se esistessero problemi di trasferibilità. Gli indici analizzati prendono in considerazione solo il lato offerta del sistema di trasporto ciclabile; manca un giudizio sui flussi, per verificare l’efficacia delle policy. Perciò il 3° capitolo è dedicato alla metodologia sul monitoraggio dei flussi, mediante l’utilizzo di comuni traffic counter per le rilevazioni dei flussi veicolari. Dal monitoraggio è possibile ricavare informazioni sul numero di passaggi, periodi di punta, esistenza di percorsi preferiti, influenza delle condizioni climatiche, utili ai progettisti; si possono creare serie storiche di dati per controllare l’evoluzione della mobilità ciclabile e determinare l’esistenza di criticità dell’infrastruttura. L’efficacia della pianificazione ciclabile è legata al grado di soddisfazione dell’utente e all’appetibilità delle infrastrutture, perciò il progettista deve conoscere degli elementi che influenzano le scelte del ciclista. Nel 4° capitolo sono analizzate le tecniche e gli studi sulle scelte dell’itinerario dei ciclisti, e lo studio pilota fatto a Bologna per definire le variabili che influenzano le scelte dei ciclisti e il loro peso.
Resumo:
Analytics is the technology working with the manipulation of data to produce information able to change the world we live every day. Analytics have been largely used within the last decade to cluster people’s behaviour to predict their preferences of items to buy, music to listen, movies to watch and even electoral preference. The most advanced companies succeded in controlling people’s behaviour using analytics. Despite the evidence of the super-power of analytics, they are rarely applied to the big data collected within supply chain systems (i.e. distribution network, storage systems and production plants). This PhD thesis explores the fourth research paradigm (i.e. the generation of knowledge from data) applied to supply chain system design and operations management. An ontology defining the entities and the metrics of supply chain systems is used to design data structures for data collection in supply chain systems. The consistency of this data is provided by mathematical demonstrations inspired by the factory physics theory. The availability, quantity and quality of the data within these data structures define different decision patterns. Ten decision patterns are identified, and validated on-field, to address ten different class of design and control problems in the field of supply chain systems research.
Resumo:
The first part of the thesis has been devoted to the transmission planning with high penetration of renewable energy sources. Both stationary and transportable battery energy storage (BES, BEST) systems have been considered in the planning model, so to obtain the optimal set of BES, BEST and transmission lines that minimizes the total cost in a power network. First, a coordinated expansion planning model with fixed transportation cost for BEST devices has been presented; then, the model has been extended to a planning formulation with a distance-dependent transportation cost for the BEST units, and its tractability has been proved through a case study based on a 190-bus test system. The second part of this thesis is then devoted to the analysis of planning and management of renewable energy communities (RECs). Initially, the planning of photovoltaic and BES systems in a REC with an incentive-based remuneration scheme according to the Italian regulatory framework has been analysed, and two planning models, according to a single-stage, or a multi-stage approach, have been proposed in order to provide the optimal set of BES and PV systems allowing to achieve the minimum energy procurement cost in a given REC. Further, the second part of this thesis is devoted to the study of the day-ahead scheduling of resources in renewable energy communities, by considering two types of REC. The first one, which we will refer to as “cooperative community”, allows direct energy transactions between members of the REC; the second type of REC considered, which we shall refer to as “incentive-based”, does not allow direct transactions between members but includes economic revenues for the community shared energy, according to the Italian regulation framework. Moreover, dispatchable renewable energy generation has been considered by including producers equipped with biogas power plants in the community.
Resumo:
Water Distribution Networks (WDNs) play a vital importance rule in communities, ensuring well-being band supporting economic growth and productivity. The need for greater investment requires design choices will impact on the efficiency of management in the coming decades. This thesis proposes an algorithmic approach to address two related problems:(i) identify the fundamental asset of large WDNs in terms of main infrastructure;(ii) sectorize large WDNs into isolated sectors in order to respect the minimum service to be guaranteed to users. Two methodologies have been developed to meet these objectives and subsequently they were integrated to guarantee an overall process which allows to optimize the sectorized configuration of WDN taking into account the needs to integrated in a global vision the two problems (i) and (ii). With regards to the problem (i), the methodology developed introduces the concept of primary network to give an answer with a dual approach, of connecting main nodes of WDN in terms of hydraulic infrastructures (reservoirs, tanks, pumps stations) and identifying hypothetical paths with the minimal energy losses. This primary network thus identified can be used as an initial basis to design the sectors. The sectorization problem (ii) has been faced using optimization techniques by the development of a new dedicated Tabu Search algorithm able to deal with real case studies of WDNs. For this reason, three new large WDNs models have been developed in order to test the capabilities of the algorithm on different and complex real cases. The developed methodology also allows to automatically identify the deficient parts of the primary network and dynamically includes new edges in order to support a sectorized configuration of the WDN. The application of the overall algorithm to the new real case studies and to others from literature has given applicable solutions even in specific complex situations.
Resumo:
The aim of this thesis is to present exact and heuristic algorithms for the integrated planning of multi-energy systems. The idea is to disaggregate the energy system, starting first with its core the Central Energy System, and then to proceed towards the Decentral part. Therefore, a mathematical model for the generation expansion operations to optimize the performance of a Central Energy System system is first proposed. To ensure that the proposed generation operations are compatible with the network, some extensions of the existing network are considered as well. All these decisions are evaluated both from an economic viewpoint and from an environmental perspective, as specific constraints related to greenhouse gases emissions are imposed in the formulation. Then, the thesis presents an optimization model for solar organic Rankine cycle in the context of transactive energy trading. In this study, the impact that this technology can have on the peer-to-peer trading application in renewable based community microgrids is inspected. Here the consumer becomes a prosumer and engages actively in virtual trading with other prosumers at the distribution system level. Moreover, there is an investigation of how different technological parameters of the solar Organic Rankine Cycle may affect the final solution. Finally, the thesis introduces a tactical optimization model for the maintenance operations’ scheduling phase of a Combined Heat and Power plant. Specifically, two types of cleaning operations are considered, i.e., online cleaning and offline cleaning. Furthermore, a piecewise linear representation of the electric efficiency variation curve is included. Given the challenge of solving the tactical management model, a heuristic algorithm is proposed. The heuristic works by solving the daily operational production scheduling problem, based on the final consumer’s demand and on the electricity prices. The aggregate information from the operational problem is used to derive maintenance decisions at a tactical level.
Resumo:
In this thesis we study three combinatorial optimization problems belonging to the classes of Network Design and Vehicle Routing problems that are strongly linked in the context of the design and management of transportation networks: the Non-Bifurcated Capacitated Network Design Problem (NBP), the Period Vehicle Routing Problem (PVRP) and the Pickup and Delivery Problem with Time Windows (PDPTW). These problems are NP-hard and contain as special cases some well known difficult problems such as the Traveling Salesman Problem and the Steiner Tree Problem. Moreover, they model the core structure of many practical problems arising in logistics and telecommunications. The NBP is the problem of designing the optimum network to satisfy a given set of traffic demands. Given a set of nodes, a set of potential links and a set of point-to-point demands called commodities, the objective is to select the links to install and dimension their capacities so that all the demands can be routed between their respective endpoints, and the sum of link fixed costs and commodity routing costs is minimized. The problem is called non- bifurcated because the solution network must allow each demand to follow a single path, i.e., the flow of each demand cannot be splitted. Although this is the case in many real applications, the NBP has received significantly less attention in the literature than other capacitated network design problems that allow bifurcation. We describe an exact algorithm for the NBP that is based on solving by an integer programming solver a formulation of the problem strengthened by simple valid inequalities and four new heuristic algorithms. One of these heuristics is an adaptive memory metaheuristic, based on partial enumeration, that could be applied to a wider class of structured combinatorial optimization problems. In the PVRP a fleet of vehicles of identical capacity must be used to service a set of customers over a planning period of several days. Each customer specifies a service frequency, a set of allowable day-combinations and a quantity of product that the customer must receive every time he is visited. For example, a customer may require to be visited twice during a 5-day period imposing that these visits take place on Monday-Thursday or Monday-Friday or Tuesday-Friday. The problem consists in simultaneously assigning a day- combination to each customer and in designing the vehicle routes for each day so that each customer is visited the required number of times, the number of routes on each day does not exceed the number of vehicles available, and the total cost of the routes over the period is minimized. We also consider a tactical variant of this problem, called Tactical Planning Vehicle Routing Problem, where customers require to be visited on a specific day of the period but a penalty cost, called service cost, can be paid to postpone the visit to a later day than that required. At our knowledge all the algorithms proposed in the literature for the PVRP are heuristics. In this thesis we present for the first time an exact algorithm for the PVRP that is based on different relaxations of a set partitioning-like formulation. The effectiveness of the proposed algorithm is tested on a set of instances from the literature and on a new set of instances. Finally, the PDPTW is to service a set of transportation requests using a fleet of identical vehicles of limited capacity located at a central depot. Each request specifies a pickup location and a delivery location and requires that a given quantity of load is transported from the pickup location to the delivery location. Moreover, each location can be visited only within an associated time window. Each vehicle can perform at most one route and the problem is to satisfy all the requests using the available vehicles so that each request is serviced by a single vehicle, the load on each vehicle does not exceed the capacity, and all locations are visited according to their time window. We formulate the PDPTW as a set partitioning-like problem with additional cuts and we propose an exact algorithm based on different relaxations of the mathematical formulation and a branch-and-cut-and-price algorithm. The new algorithm is tested on two classes of problems from the literature and compared with a recent branch-and-cut-and-price algorithm from the literature.
Resumo:
At global level, the population is increasingly concentrating in the cities. In Europe, around 75% of the population lives in urban areas and, according to the European Environmental Agency (2010), urban population is foreseen to increase up to 80 % by 2020. At the same time, the quality of life in the cities is declining and urban pollution keeps increasing in terms of carbon dioxide (CO2) emissions, waste, noise, and lack of greenery. Many of European cities struggle to cope with social, economic and environmental problems resulting from pressures such as overcrowding or decline, social inequity, health problems related to food security and pollution. Nowadays local authorities try to solve these problems related to the environmental sustainability through various urban logistics measures, which directly and indirectly affect the urban food supply system, thus an integrated approach including freight transport and food provisioning policies issues is needed. This research centres on the urban food transport system and its impact on the city environmental sustainability. The main question that drives the research analysis is "How the urban food distribution system affects the ecological sustainability in modern cities?" The research analyses the city logistics project for food transport implemented in Parma, Italy, by the wholesale produce market. The case study investigates the renewed role of the wholesale market in the urban food supply chain as commercial and logistic operator, referring to the concept of food hub. Then, a preliminary analysis on the urban food transport for the city of Bologna is presented. The research aims at suggesting a methodological framework to estimate the urban food demand, the urban food supply and to assess the urban food transport performance, in order to identify external costs indicators that help policymakers in evaluating the environmental sustainability of different logistics measures
Resumo:
The continuous advancements and enhancements of wireless systems are enabling new compelling scenarios where mobile services can adapt according to the current execution context, represented by the computational resources available at the local device, current physical location, people in physical proximity, and so forth. Such services called context-aware require the timely delivery of all relevant information describing the current context, and that introduces several unsolved complexities, spanning from low-level context data transmission up to context data storage and replication into the mobile system. In addition, to ensure correct and scalable context provisioning, it is crucial to integrate and interoperate with different wireless technologies (WiFi, Bluetooth, etc.) and modes (infrastructure-based and ad-hoc), and to use decentralized solutions to store and replicate context data on mobile devices. These challenges call for novel middleware solutions, here called Context Data Distribution Infrastructures (CDDIs), capable of delivering relevant context data to mobile devices, while hiding all the issues introduced by data distribution in heterogeneous and large-scale mobile settings. This dissertation thoroughly analyzes CDDIs for mobile systems, with the main goal of achieving a holistic approach to the design of such type of middleware solutions. We discuss the main functions needed by context data distribution in large mobile systems, and we claim the precise definition and clean respect of quality-based contracts between context consumers and CDDI to reconfigure main middleware components at runtime. We present the design and the implementation of our proposals, both in simulation-based and in real-world scenarios, along with an extensive evaluation that confirms the technical soundness of proposed CDDI solutions. Finally, we consider three highly heterogeneous scenarios, namely disaster areas, smart campuses, and smart cities, to better remark the wide technical validity of our analysis and solutions under different network deployments and quality constraints.
Resumo:
Decomposition based approaches are recalled from primal and dual point of view. The possibility of building partially disaggregated reduced master problems is investigated. This extends the idea of aggregated-versus-disaggregated formulation to a gradual choice of alternative level of aggregation. Partial aggregation is applied to the linear multicommodity minimum cost flow problem. The possibility of having only partially aggregated bundles opens a wide range of alternatives with different trade-offs between the number of iterations and the required computation for solving it. This trade-off is explored for several sets of instances and the results are compared with the ones obtained by directly solving the natural node-arc formulation. An iterative solution process to the route assignment problem is proposed, based on the well-known Frank Wolfe algorithm. In order to provide a first feasible solution to the Frank Wolfe algorithm, a linear multicommodity min-cost flow problem is solved to optimality by using the decomposition techniques mentioned above. Solutions of this problem are useful for network orientation and design, especially in relation with public transportation systems as the Personal Rapid Transit. A single-commodity robust network design problem is addressed. In this, an undirected graph with edge costs is given together with a discrete set of balance matrices, representing different supply/demand scenarios. The goal is to determine the minimum cost installation of capacities on the edges such that the flow exchange is feasible for every scenario. A set of new instances that are computationally hard for the natural flow formulation are solved by means of a new heuristic algorithm. Finally, an efficient decomposition-based heuristic approach for a large scale stochastic unit commitment problem is presented. The addressed real-world stochastic problem employs at its core a deterministic unit commitment planning model developed by the California Independent System Operator (ISO).