33 resultados para Distributed multimedia systems
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Traditional software engineering approaches and metaphors fall short when applied to areas of growing relevance such as electronic commerce, enterprise resource planning, and mobile computing: such areas, in fact, generally call for open architectures that may evolve dynamically over time so as to accommodate new components and meet new requirements. This is probably one of the main reasons that the agent metaphor and the agent-oriented paradigm are gaining momentum in these areas. This thesis deals with the engineering of complex software systems in terms of the agent paradigm. This paradigm is based on the notions of agent and systems of interacting agents as fundamental abstractions for designing, developing and managing at runtime typically distributed software systems. However, today the engineer often works with technologies that do not support the abstractions used in the design of the systems. For this reason the research on methodologies becomes the basic point in the scientific activity. Currently most agent-oriented methodologies are supported by small teams of academic researchers, and as a result, most of them are in an early stage and still in the first context of mostly \academic" approaches for agent-oriented systems development. Moreover, such methodologies are not well documented and very often defined and presented only by focusing on specific aspects of the methodology. The role played by meta- models becomes fundamental for comparing and evaluating the methodologies. In fact a meta-model specifies the concepts, rules and relationships used to define methodologies. Although it is possible to describe a methodology without an explicit meta-model, formalising the underpinning ideas of the methodology in question is valuable when checking its consistency or planning extensions or modifications. A good meta-model must address all the different aspects of a methodology, i.e. the process to be followed, the work products to be generated and those responsible for making all this happen. In turn, specifying the work products that must be developed implies dening the basic modelling building blocks from which they are built. As a building block, the agent abstraction alone is not enough to fully model all the aspects related to multi-agent systems in a natural way. In particular, different perspectives exist on the role that environment plays within agent systems: however, it is clear at least that all non-agent elements of a multi-agent system are typically considered to be part of the multi-agent system environment. The key role of environment as a first-class abstraction in the engineering of multi-agent system is today generally acknowledged in the multi-agent system community, so environment should be explicitly accounted for in the engineering of multi-agent system, working as a new design dimension for agent-oriented methodologies. At least two main ingredients shape the environment: environment abstractions - entities of the environment encapsulating some functions -, and topology abstractions - entities of environment that represent the (either logical or physical) spatial structure. In addition, the engineering of non-trivial multi-agent systems requires principles and mechanisms for supporting the management of the system representation complexity. These principles lead to the adoption of a multi-layered description, which could be used by designers to provide different levels of abstraction over multi-agent systems. The research in these fields has lead to the formulation of a new version of the SODA methodology where environment abstractions and layering principles are exploited for en- gineering multi-agent systems.
Resumo:
This thesis describes modelling tools and methods suited for complex systems (systems that typically are represented by a plurality of models). The basic idea is that all models representing the system should be linked by well-defined model operations in order to build a structured repository of information, a hierarchy of models. The port-Hamiltonian framework is a good candidate to solve this kind of problems as it supports the most important model operations natively. The thesis in particular addresses the problem of integrating distributed parameter systems in a model hierarchy, and shows two possible mechanisms to do that: a finite-element discretization in port-Hamiltonian form, and a structure-preserving model order reduction for discretized models obtainable from commercial finite-element packages.
Resumo:
This thesis gathers the work carried out by the author in the last three years of research and it concerns the study and implementation of algorithms to coordinate and control a swarm of mobile robots moving in unknown environments. In particular, the author's attention is focused on two different approaches in order to solve two different problems. The first algorithm considered in this work deals with the possibility of decomposing a main complex task in many simple subtasks by exploiting the decentralized implementation of the so called \emph{Null Space Behavioral} paradigm. This approach to the problem of merging different subtasks with assigned priority is slightly modified in order to handle critical situations that can be detected when robots are moving through an unknown environment. In fact, issues can occur when one or more robots got stuck in local minima: a smart strategy to avoid deadlock situations is provided by the author and the algorithm is validated by simulative analysis. The second problem deals with the use of concepts borrowed from \emph{graph theory} to control a group differential wheel robots by exploiting the Laplacian solution of the consensus problem. Constraints on the swarm communication topology have been introduced by the use of a range and bearing platform developed at the Distributed Intelligent Systems and Algorithms Laboratory (DISAL), EPFL (Lausanne, CH) where part of author's work has been carried out. The control algorithm is validated by demonstration and simulation analysis and, later, is performed by a team of four robots engaged in a formation mission. To conclude, the capabilities of the algorithm based on the local solution of the consensus problem for differential wheel robots are demonstrated with an application scenario, where nine robots are engaged in a hunting task.
Resumo:
Two of the main features of today complex software systems like pervasive computing systems and Internet-based applications are distribution and openness. Distribution revolves around three orthogonal dimensions: (i) distribution of control|systems are characterised by several independent computational entities and devices, each representing an autonomous and proactive locus of control; (ii) spatial distribution|entities and devices are physically distributed and connected in a global (such as the Internet) or local network; and (iii) temporal distribution|interacting system components come and go over time, and are not required to be available for interaction at the same time. Openness deals with the heterogeneity and dynamism of system components: complex computational systems are open to the integration of diverse components, heterogeneous in terms of architecture and technology, and are dynamic since they allow components to be updated, added, or removed while the system is running. The engineering of open and distributed computational systems mandates for the adoption of a software infrastructure whose underlying model and technology could provide the required level of uncoupling among system components. This is the main motivation behind current research trends in the area of coordination middleware to exploit tuple-based coordination models in the engineering of complex software systems, since they intrinsically provide coordinated components with communication uncoupling and further details in the references therein. An additional daunting challenge for tuple-based models comes from knowledge-intensive application scenarios, namely, scenarios where most of the activities are based on knowledge in some form|and where knowledge becomes the prominent means by which systems get coordinated. Handling knowledge in tuple-based systems induces problems in terms of syntax - e.g., two tuples containing the same data may not match due to differences in the tuple structure - and (mostly) of semantics|e.g., two tuples representing the same information may not match based on a dierent syntax adopted. Till now, the problem has been faced by exploiting tuple-based coordination within a middleware for knowledge intensive environments: e.g., experiments with tuple-based coordination within a Semantic Web middleware (surveys analogous approaches). However, they appear to be designed to tackle the design of coordination for specic application contexts like Semantic Web and Semantic Web Services, and they result in a rather involved extension of the tuple space model. The main goal of this thesis was to conceive a more general approach to semantic coordination. In particular, it was developed the model and technology of semantic tuple centres. It is adopted the tuple centre model as main coordination abstraction to manage system interactions. A tuple centre can be seen as a programmable tuple space, i.e. an extension of a Linda tuple space, where the behaviour of the tuple space can be programmed so as to react to interaction events. By encapsulating coordination laws within coordination media, tuple centres promote coordination uncoupling among coordinated components. Then, the tuple centre model was semantically enriched: a main design choice in this work was to try not to completely redesign the existing syntactic tuple space model, but rather provide a smooth extension that { although supporting semantic reasoning { keep the simplicity of tuple and tuple matching as easier as possible. By encapsulating the semantic representation of the domain of discourse within coordination media, semantic tuple centres promote semantic uncoupling among coordinated components. The main contributions of the thesis are: (i) the design of the semantic tuple centre model; (ii) the implementation and evaluation of the model based on an existent coordination infrastructure; (iii) a view of the application scenarios in which semantic tuple centres seem to be suitable as coordination media.
Resumo:
This doctoral dissertation aims to establish fiber-optic technologies overcoming the limiting issues of data communications in indoor environments. Specific applications are broadband mobile distribution in different in-building scenarios and high-speed digital transmission over short-range wired optical systems. Two key enabling technologies are considered: Radio over Fiber (RoF) techniques over standard silica fibers for distributed antenna systems (DAS) and plastic optical fibers (POFs) for short-range communications. Hence, the objectives and achievements of this thesis are related to the application of RoF and POF technologies in different in-building scenarios. On one hand, a theoretical and experimental analysis combined with demonstration activities has been performed on cost-effective RoF systems. An extensive modeling on modal noise impact both on linear and non-linear characteristics of RoF link over silica multimode fiber has been performed to achieve link design rules for an optimum choice of the transmitter, receiver and launching technique. A successful transmission of Long Term Evolution (LTE) mobile signals on the resulting optimized RoF system over silica multimode fiber employing a Fabry-Perot LD, central launch technique and a photodiode with a built-in ball lens was demonstrated up to 525m with performances well compliant with standard requirements. On the other hand, digital signal processing techniques to overcome the bandwidth limitation of POF have been investigated. An uncoded net bit-rate of 5.15Gbit/s was obtained on a 50m long POF link employing an eye-safe transmitter, a silicon photodiode, and DMT modulation with bit and power loading algorithm. With the insertion of 3x2N quadrature amplitude modulation constellation formats, an uncoded net-bit-rate of 5.4Gbit/s was obtained on a 50 m long POF link employing an eye-safe transmitter and a silicon avalanche photodiode. Moreover, simultaneous transmission of baseband 2Gbit/s with DMT and 200Mbit/s with an ultra-wideband radio signal has been validated over a 50m long POF link.
Resumo:
The wide use of e-technologies represents a great opportunity for underserved segments of the population, especially with the aim of reintegrating excluded individuals back into society through education. This is particularly true for people with different types of disabilities who may have difficulties while attending traditional on-site learning programs that are typically based on printed learning resources. The creation and provision of accessible e-learning contents may therefore become a key factor in enabling people with different access needs to enjoy quality learning experiences and services. Another e-learning challenge is represented by m-learning (which stands for mobile learning), which is emerging as a consequence of mobile terminals diffusion and provides the opportunity to browse didactical materials everywhere, outside places that are traditionally devoted to education. Both such situations share the need to access materials in limited conditions and collide with the growing use of rich media in didactical contents, which are designed to be enjoyed without any restriction. Nowadays, Web-based teaching makes great use of multimedia technologies, ranging from Flash animations to prerecorded video-lectures. Rich media in e-learning can offer significant potential in enhancing the learning environment, through helping to increase access to education, enhance the learning experience and support multiple learning styles. Moreover, they can often be used to improve the structure of Web-based courses. These highly variegated and structured contents may significantly improve the quality and the effectiveness of educational activities for learners. For example, rich media contents allow us to describe complex concepts and process flows. Audio and video elements may be utilized to add a “human touch” to distance-learning courses. Finally, real lectures may be recorded and distributed to integrate or enrich on line materials. A confirmation of the advantages of these approaches can be seen in the exponential growth of video-lecture availability on the net, due to the ease of recording and delivering activities which take place in a traditional classroom. Furthermore, the wide use of assistive technologies for learners with disabilities injects new life into e-learning systems. E-learning allows distance and flexible educational activities, thus helping disabled learners to access resources which would otherwise present significant barriers for them. For instance, students with visual impairments have difficulties in reading traditional visual materials, deaf learners have trouble in following traditional (spoken) lectures, people with motion disabilities have problems in attending on-site programs. As already mentioned, the use of wireless technologies and pervasive computing may really enhance the educational learner experience by offering mobile e-learning services that can be accessed by handheld devices. This new paradigm of educational content distribution maximizes the benefits for learners since it enables users to overcome constraints imposed by the surrounding environment. While certainly helpful for users without disabilities, we believe that the use of newmobile technologies may also become a fundamental tool for impaired learners, since it frees them from sitting in front of a PC. In this way, educational activities can be enjoyed by all the users, without hindrance, thus increasing the social inclusion of non-typical learners. While the provision of fully accessible and portable video-lectures may be extremely useful for students, it is widely recognized that structuring and managing rich media contents for mobile learning services are complex and expensive tasks. Indeed, major difficulties originate from the basic need to provide a textual equivalent for each media resource composing a rich media Learning Object (LO). Moreover, tests need to be carried out to establish whether a given LO is fully accessible to all kinds of learners. Unfortunately, both these tasks are truly time-consuming processes, depending on the type of contents the teacher is writing and on the authoring tool he/she is using. Due to these difficulties, online LOs are often distributed as partially accessible or totally inaccessible content. Bearing this in mind, this thesis aims to discuss the key issues of a system we have developed to deliver accessible, customized or nomadic learning experiences to learners with different access needs and skills. To reduce the risk of excluding users with particular access capabilities, our system exploits Learning Objects (LOs) which are dynamically adapted and transcoded based on the specific needs of non-typical users and on the barriers that they can encounter in the environment. The basic idea is to dynamically adapt contents, by selecting them from a set of media resources packaged in SCORM-compliant LOs and stored in a self-adapting format. The system schedules and orchestrates a set of transcoding processes based on specific learner needs, so as to produce a customized LO that can be fully enjoyed by any (impaired or mobile) student.
Resumo:
In recent years, due to the rapid convergence of multimedia services, Internet and wireless communications, there has been a growing trend of heterogeneity (in terms of channel bandwidths, mobility levels of terminals, end-user quality-of-service (QoS) requirements) for emerging integrated wired/wireless networks. Moreover, in nowadays systems, a multitude of users coexists within the same network, each of them with his own QoS requirement and bandwidth availability. In this framework, embedded source coding allowing partial decoding at various resolution is an appealing technique for multimedia transmissions. This dissertation includes my PhD research, mainly devoted to the study of embedded multimedia bitstreams in heterogenous networks, developed at the University of Bologna, advised by Prof. O. Andrisano and Prof. A. Conti, and at the University of California, San Diego (UCSD), where I spent eighteen months as a visiting scholar, advised by Prof. L. B. Milstein and Prof. P. C. Cosman. In order to improve the multimedia transmission quality over wireless channels, joint source and channel coding optimization is investigated in a 2D time-frequency resource block for an OFDM system. We show that knowing the order of diversity in time and/or frequency domain can assist image (video) coding in selecting optimal channel code rates (source and channel code rates). Then, adaptive modulation techniques, aimed at maximizing the spectral efficiency, are investigated as another possible solution for improving multimedia transmissions. For both slow and fast adaptive modulations, the effects of imperfect channel estimation errors are evaluated, showing that the fast technique, optimal in ideal systems, might be outperformed by the slow adaptive modulation, when a real test case is considered. Finally, the effects of co-channel interference and approximated bit error probability (BEP) are evaluated in adaptive modulation techniques, providing new decision regions concepts, and showing how the widely used BEP approximations lead to a substantial loss in the overall performance.
Resumo:
Modern software systems, in particular distributed ones, are everywhere around us and are at the basis of our everyday activities. Hence, guaranteeing their cor- rectness, consistency and safety is of paramount importance. Their complexity makes the verification of such properties a very challenging task. It is natural to expect that these systems are reliable and above all usable. i) In order to be reliable, compositional models of software systems need to account for consistent dynamic reconfiguration, i.e., changing at runtime the communication patterns of a program. ii) In order to be useful, compositional models of software systems need to account for interaction, which can be seen as communication patterns among components which collaborate together to achieve a common task. The aim of the Ph.D. was to develop powerful techniques based on formal methods for the verification of correctness, consistency and safety properties related to dynamic reconfiguration and communication in complex distributed systems. In particular, static analysis techniques based on types and type systems appeared to be an adequate methodology, considering their success in guaranteeing not only basic safety properties, but also more sophisticated ones like, deadlock or livelock freedom in a concurrent setting. The main contributions of this dissertation are twofold. i) On the components side: we design types and a type system for a concurrent object-oriented calculus to statically ensure consistency of dynamic reconfigurations related to modifications of communication patterns in a program during execution time. ii) On the communication side: we study advanced safety properties related to communication in complex distributed systems like deadlock-freedom, livelock- freedom and progress. Most importantly, we exploit an encoding of types and terms of a typical distributed language, session π-calculus, into the standard typed π- calculus, in order to understand their expressive power.
Resumo:
With the aim of heading towards a more sustainable future, there has been a noticeable increase in the installation of Renewable Energy Sources (RES) in power systems in the latest years. Besides the evident environmental benefits, RES pose several technological challenges in terms of scheduling, operation, and control of transmission and distribution power networks. Therefore, it raised the necessity of developing smart grids, relying on suitable distributed measurement infrastructure, for instance, based on Phasor Measurement Units (PMUs). Not only are such devices able to estimate a phasor, but they can also provide time information which is essential for real-time monitoring. This Thesis falls within this context by analyzing the uncertainty requirements of PMUs in distribution and transmission applications. Concerning the latter, the reliability of PMU measurements during severe power system events is examined, whereas for the first, typical configurations of distribution networks are studied for the development of target uncertainties. The second part of the Thesis, instead, is dedicated to the application of PMUs in low-inertia power grids. The replacement of traditional synchronous machines with inertia-less RES is progressively reducing the overall system inertia, resulting in faster and more severe events. In this scenario, PMUs may play a vital role in spite of the fact that no standard requirements nor target uncertainties are yet available. This Thesis deeply investigates PMU-based applications, by proposing a new inertia index relying only on local measurements and evaluating their reliability in low-inertia scenarios. It also develops possible uncertainty intervals based on the electrical instrumentation currently used in power systems and assesses the interoperability with other devices before and after contingency events.
Resumo:
Advances in wireless networking and content delivery systems are enabling new challenging provisioning scenarios where a growing number of users access multimedia services, e.g., audio/video streaming, while moving among different points of attachment to the Internet, possibly with different connectivity technologies, e.g., Wi-Fi, Bluetooth, and cellular 3G. That calls for novel middlewares capable of dynamically personalizing service provisioning to the characteristics of client environments, in particular to discontinuities in wireless resource availability due to handoffs. This dissertation proposes a novel middleware solution, called MUM, that performs effective and context-aware handoff management to transparently avoid service interruptions during both horizontal and vertical handoffs. To achieve the goal, MUM exploits the full visibility of wireless connections available in client localities and their handoff implementations (handoff awareness), of service quality requirements and handoff-related quality degradations (QoS awareness), and of network topology and resources available in current/future localities (location awareness). The design and implementation of the all main MUM components along with extensive on the field trials of the realized middleware architecture confirmed the validity of the proposed full context-aware handoff management approach. In particular, the reported experimental results demonstrate that MUM can effectively maintain service continuity for a wide range of different multimedia services by exploiting handoff prediction mechanisms, adaptive buffering and pre-fetching techniques, and proactive re-addressing/re-binding.
Resumo:
Motion control is a sub-field of automation, in which the position and/or velocity of machines are controlled using some type of device. In motion control the position, velocity, force, pressure, etc., profiles are designed in such a way that the different mechanical parts work as an harmonious whole in which a perfect synchronization must be achieved. The real-time exchange of information in the distributed system that is nowadays an industrial plant plays an important role in order to achieve always better performance, better effectiveness and better safety. The network for connecting field devices such as sensors, actuators, field controllers such as PLCs, regulators, drive controller etc., and man-machine interfaces is commonly called fieldbus. Since the motion transmission is now task of the communication system, and not more of kinematic chains as in the past, the communication protocol must assure that the desired profiles, and their properties, are correctly transmitted to the axes then reproduced or else the synchronization among the different parts is lost with all the resulting consequences. In this thesis, the problem of trajectory reconstruction in the case of an event-triggered communication system is faced. The most important feature that a real-time communication system must have is the preservation of the following temporal and spatial properties: absolute temporal consistency, relative temporal consistency, spatial consistency. Starting from the basic system composed by one master and one slave and passing through systems made up by many slaves and one master or many masters and one slave, the problems in the profile reconstruction and temporal properties preservation, and subsequently the synchronization of different profiles in network adopting an event-triggered communication system, have been shown. These networks are characterized by the fact that a common knowledge of the global time is not available. Therefore they are non-deterministic networks. Each topology is analyzed and the proposed solution based on phase-locked loops adopted for the basic master-slave case has been improved to face with the other configurations.
Resumo:
The research activity carried out during the PhD course in Electrical Engineering belongs to the branch of electric and electronic measurements. The main subject of the present thesis is a distributed measurement system to be installed in Medium Voltage power networks, as well as the method developed to analyze data acquired by the measurement system itself and to monitor power quality. In chapter 2 the increasing interest towards power quality in electrical systems is illustrated, by reporting the international research activity inherent to the problem and the relevant standards and guidelines emitted. The aspect of the quality of voltage provided by utilities and influenced by customers in the various points of a network came out only in recent years, in particular as a consequence of the energy market liberalization. Usually, the concept of quality of the delivered energy has been associated mostly to its continuity. Hence the reliability was the main characteristic to be ensured for power systems. Nowadays, the number and duration of interruptions are the “quality indicators” commonly perceived by most customers; for this reason, a short section is dedicated also to network reliability and its regulation. In this contest it should be noted that although the measurement system developed during the research activity belongs to the field of power quality evaluation systems, the information registered in real time by its remote stations can be used to improve the system reliability too. Given the vast scenario of power quality degrading phenomena that usually can occur in distribution networks, the study has been focused on electromagnetic transients affecting line voltages. The outcome of such a study has been the design and realization of a distributed measurement system which continuously monitor the phase signals in different points of a network, detect the occurrence of transients superposed to the fundamental steady state component and register the time of occurrence of such events. The data set is finally used to locate the source of the transient disturbance propagating along the network lines. Most of the oscillatory transients affecting line voltages are due to faults occurring in any point of the distribution system and have to be seen before protection equipment intervention. An important conclusion is that the method can improve the monitored network reliability, since the knowledge of the location of a fault allows the energy manager to reduce as much as possible both the area of the network to be disconnected for protection purposes and the time spent by technical staff to recover the abnormal condition and/or the damage. The part of the thesis presenting the results of such a study and activity is structured as follows: chapter 3 deals with the propagation of electromagnetic transients in power systems by defining characteristics and causes of the phenomena and briefly reporting the theory and approaches used to study transients propagation. Then the state of the art concerning methods to detect and locate faults in distribution networks is presented. Finally the attention is paid on the particular technique adopted for the same purpose during the thesis, and the methods developed on the basis of such approach. Chapter 4 reports the configuration of the distribution networks on which the fault location method has been applied by means of simulations as well as the results obtained case by case. In this way the performance featured by the location procedure firstly in ideal then in realistic operating conditions are tested. In chapter 5 the measurement system designed to implement the transients detection and fault location method is presented. The hardware belonging to the measurement chain of every acquisition channel in remote stations is described. Then, the global measurement system is characterized by considering the non ideal aspects of each device that can concur to the final combined uncertainty on the estimated position of the fault in the network under test. Finally, such parameter is computed according to the Guide to the Expression of Uncertainty in Measurements, by means of a numeric procedure. In the last chapter a device is described that has been designed and realized during the PhD activity aiming at substituting the commercial capacitive voltage divider belonging to the conditioning block of the measurement chain. Such a study has been carried out aiming at providing an alternative to the used transducer that could feature equivalent performance and lower cost. In this way, the economical impact of the investment associated to the whole measurement system would be significantly reduced, making the method application much more feasible.
Resumo:
Reasoning under uncertainty is a human capacity that in software system is necessary and often hidden. Argumentation theory and logic make explicit non-monotonic information in order to enable automatic forms of reasoning under uncertainty. In human organization Distributed Cognition and Activity Theory explain how artifacts are fundamental in all cognitive process. Then, in this thesis we search to understand the use of cognitive artifacts in an new argumentation framework for an agent-based artificial society.