6 resultados para Distributed lag model

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes modelling tools and methods suited for complex systems (systems that typically are represented by a plurality of models). The basic idea is that all models representing the system should be linked by well-defined model operations in order to build a structured repository of information, a hierarchy of models. The port-Hamiltonian framework is a good candidate to solve this kind of problems as it supports the most important model operations natively. The thesis in particular addresses the problem of integrating distributed parameter systems in a model hierarchy, and shows two possible mechanisms to do that: a finite-element discretization in port-Hamiltonian form, and a structure-preserving model order reduction for discretized models obtainable from commercial finite-element packages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the thesi is to formulate a suitable Item Response Theory (IRT) based model to measure HRQoL (as latent variable) using a mixed responses questionnaire and relaxing the hypothesis of normal distributed latent variable. The new model is a combination of two models already presented in literature, that is, a latent trait model for mixed responses and an IRT model for Skew Normal latent variable. It is developed in a Bayesian framework, a Markov chain Monte Carlo procedure is used to generate samples of the posterior distribution of the parameters of interest. The proposed model is test on a questionnaire composed by 5 discrete items and one continuous to measure HRQoL in children, the EQ-5D-Y questionnaire. A large sample of children collected in the schools was used. In comparison with a model for only discrete responses and a model for mixed responses and normal latent variable, the new model has better performances, in term of deviance information criterion (DIC), chain convergences times and precision of the estimates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The wide diffusion of cheap, small, and portable sensors integrated in an unprecedented large variety of devices and the availability of almost ubiquitous Internet connectivity make it possible to collect an unprecedented amount of real time information about the environment we live in. These data streams, if properly and timely analyzed, can be exploited to build new intelligent and pervasive services that have the potential of improving people's quality of life in a variety of cross concerning domains such as entertainment, health-care, or energy management. The large heterogeneity of application domains, however, calls for a middleware-level infrastructure that can effectively support their different quality requirements. In this thesis we study the challenges related to the provisioning of differentiated quality-of-service (QoS) during the processing of data streams produced in pervasive environments. We analyze the trade-offs between guaranteed quality, cost, and scalability in streams distribution and processing by surveying existing state-of-the-art solutions and identifying and exploring their weaknesses. We propose an original model for QoS-centric distributed stream processing in data centers and we present Quasit, its prototype implementation offering a scalable and extensible platform that can be used by researchers to implement and validate novel QoS-enforcement mechanisms. To support our study, we also explore an original class of weaker quality guarantees that can reduce costs when application semantics do not require strict quality enforcement. We validate the effectiveness of this idea in a practical use-case scenario that investigates partial fault-tolerance policies in stream processing by performing a large experimental study on the prototype of our novel LAAR dynamic replication technique. Our modeling, prototyping, and experimental work demonstrates that, by providing data distribution and processing middleware with application-level knowledge of the different quality requirements associated to different pervasive data flows, it is possible to improve system scalability while reducing costs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spatial prediction of hourly rainfall via radar calibration is addressed. The change of support problem (COSP), arising when the spatial supports of different data sources do not coincide, is faced in a non-Gaussian setting; in fact, hourly rainfall in Emilia-Romagna region, in Italy, is characterized by abundance of zero values and right-skeweness of the distribution of positive amounts. Rain gauge direct measurements on sparsely distributed locations and hourly cumulated radar grids are provided by the ARPA-SIMC Emilia-Romagna. We propose a three-stage Bayesian hierarchical model for radar calibration, exploiting rain gauges as reference measure. Rain probability and amounts are modeled via linear relationships with radar in the log scale; spatial correlated Gaussian effects capture the residual information. We employ a probit link for rainfall probability and Gamma distribution for rainfall positive amounts; the two steps are joined via a two-part semicontinuous model. Three model specifications differently addressing COSP are presented; in particular, a stochastic weighting of all radar pixels, driven by a latent Gaussian process defined on the grid, is employed. Estimation is performed via MCMC procedures implemented in C, linked to R software. Communication and evaluation of probabilistic, point and interval predictions is investigated. A non-randomized PIT histogram is proposed for correctly assessing calibration and coverage of two-part semicontinuous models. Predictions obtained with the different model specifications are evaluated via graphical tools (Reliability Plot, Sharpness Histogram, PIT Histogram, Brier Score Plot and Quantile Decomposition Plot), proper scoring rules (Brier Score, Continuous Rank Probability Score) and consistent scoring functions (Root Mean Square Error and Mean Absolute Error addressing the predictive mean and median, respectively). Calibration is reached and the inclusion of neighbouring information slightly improves predictions. All specifications outperform a benchmark model with incorrelated effects, confirming the relevance of spatial correlation for modeling rainfall probability and accumulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonhuman primates (NHPs) are important animal models for the study of human health and disease. In particular, the use of NHPs to study the vaginal microbiome and susceptibility to infections (such as HIV and herpesvirus) is exceptionally valuable due to the similarity in anatomy and physiology. An important aspect to this is maintaining a healthy vaginal microbiome which then minimizes colonization by pathogens and resulting inflammation along the mucosa. In women, conditions such as bacterial vaginosis (BV) are frequently treated with antibiotics such as metronidazole or clindamycin. Due to the excessive use of antimicrobials in medicine and agriculture, alternative compounds and therapies are highly desired to treat infections. Approaches that have been developed and used for vaginal infections includes the use of natural antimicrobials such as essential oils, probiotics, and live cultures, which mimic and function like antibiotics but lack development of resistance like classic antibiotics. However, these approaches have been minimally studied in humans and animals. Effectiveness of essential oils are anecdotal at best. Microbiome manipulation on the other hand has been investigated more thoroughly. Novel products are being distributed for medical use and are monotherapies containing Lactobacillus which colonize the vaginal mucosa (Ali et al., 2020; Brichacek et al., 2013; Lagenaur, Sanders-Beer, et al., 2011). Unfortunately, these therapies have limitations due to durability and individual response in women. By evaluating the extent by which the NHP vaginal mucosa can be colonized with exogenously delivered bacteria, this animal model will highlight the NHP for use in translational studies which use essential oils and beneficial microbiome bacteria for vaginal delivery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distributed argumentation technology is a computational approach incorporating argumentation reasoning mechanisms within multi-agent systems. For the formal foundations of distributed argumentation technology, in this thesis we conduct a principle-based analysis of structured argumentation as well as abstract multi-agent and abstract bipolar argumentation. The results of the principle-based approach of these theories provide an overview and guideline for further applications of the theories. Moreover, in this thesis we explore distributed argumentation technology using distributed ledgers. We envision an Intelligent Human-input-based Blockchain Oracle (IHiBO), an artificial intelligence tool for storing argumentation reasoning. We propose a decentralized and secure architecture for conducting decision-making, addressing key concerns of trust, transparency, and immutability. We model fund management with agent argumentation in IHiBO and analyze its compliance with European fund management legal frameworks. We illustrate how bipolar argumentation balances pros and cons in legal reasoning in a legal divorce case, and how the strength of arguments in natural language can be represented in structured arguments. Finally, we discuss how distributed argumentation technology can be used to advance risk management, regulatory compliance of distributed ledgers for financial securities, and dialogue techniques.