3 resultados para Distance-based education
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This thesis adresses the problem of localization, and analyzes its crucial aspects, within the context of cooperative WSNs. The three main issues discussed in the following are: network synchronization, position estimate and tracking. Time synchronization is a fundamental requirement for every network. In this context, a new approach based on the estimation theory is proposed to evaluate the ultimate performance limit in network time synchronization. In particular the lower bound on the variance of the average synchronization error in a fully connected network is derived by taking into account the statistical characterization of the Message Delivering Time (MDT) . Sensor network localization algorithms estimate the locations of sensors with initially unknown location information by using knowledge of the absolute positions of a few sensors and inter-sensor measurements such as distance and bearing measurements. Concerning this issue, i.e. the position estimate problem, two main contributions are given. The first is a new Semidefinite Programming (SDP) framework to analyze and solve the problem of flip-ambiguity that afflicts range-based network localization algorithms with incomplete ranging information. The occurrence of flip-ambiguous nodes and errors due to flip ambiguity is studied, then with this information a new SDP formulation of the localization problem is built. Finally a flip-ambiguity-robust network localization algorithm is derived and its performance is studied by Monte-Carlo simulations. The second contribution in the field of position estimate is about multihop networks. A multihop network is a network with a low degree of connectivity, in which couples of given any nodes, in order to communicate, they have to rely on one or more intermediate nodes (hops). Two new distance-based source localization algorithms, highly robust to distance overestimates, typically present in multihop networks, are presented and studied. The last point of this thesis discuss a new low-complexity tracking algorithm, inspired by the Fano’s sequential decoding algorithm for the position tracking of a user in a WLAN-based indoor localization system.
Resumo:
There are different ways to do cluster analysis of categorical data in the literature and the choice among them is strongly related to the aim of the researcher, if we do not take into account time and economical constraints. Main approaches for clustering are usually distinguished into model-based and distance-based methods: the former assume that objects belonging to the same class are similar in the sense that their observed values come from the same probability distribution, whose parameters are unknown and need to be estimated; the latter evaluate distances among objects by a defined dissimilarity measure and, basing on it, allocate units to the closest group. In clustering, one may be interested in the classification of similar objects into groups, and one may be interested in finding observations that come from the same true homogeneous distribution. But do both of these aims lead to the same clustering? And how good are clustering methods designed to fulfil one of these aims in terms of the other? In order to answer, two approaches, namely a latent class model (mixture of multinomial distributions) and a partition around medoids one, are evaluated and compared by Adjusted Rand Index, Average Silhouette Width and Pearson-Gamma indexes in a fairly wide simulation study. Simulation outcomes are plotted in bi-dimensional graphs via Multidimensional Scaling; size of points is proportional to the number of points that overlap and different colours are used according to the cluster membership.
Resumo:
Coral reefs are the most biodiverse ecosystems of the ocean and they provide notable ecosystem services. Nowadays, they are facing a number of local anthropogenic threats and environmental change is threatening their survivorship on a global scale. Large-scale monitoring is necessary to understand environmental changes and to perform useful conservation measurements. Governmental agencies are often underfunded and are not able of sustain the necessary spatial and temporal large-scale monitoring. To overcome the economic constrains, in some cases scientists can engage volunteers in environmental monitoring. Citizen Science enables the collection and analysis of scientific data at larger spatial and temporal scales than otherwise possible, addressing issues that are otherwise logistically or financially unfeasible. “STE: Scuba Tourism for the Environment” was a volunteer-based Red Sea coral reef biodiversity monitoring program. SCUBA divers and snorkelers were involved in the collection of data for 72 taxa, by completing survey questionnaires after their dives. In my thesis, I evaluated the reliability of the data collected by volunteers, comparing their questionnaires with those completed by professional scientists. Validation trials showed a sufficient level of reliability, indicating that non-specialists performed similarly to conservation volunteer divers on accurate transects. Using the data collected by volunteers, I developed a biodiversity index that revealed spatial trends across surveyed areas. The project results provided important feedbacks to the local authorities on the current health status of Red Sea coral reefs and on the effectiveness of the environmental management. I also analysed the spatial and temporal distribution of each surveyed taxa, identifying abundance trends related with anthropogenic impacts. Finally, I evaluated the effectiveness of the project to increase the environmental education of volunteers and showed that the participation in STEproject significantly increased both the knowledge on coral reef biology and ecology and the awareness of human behavioural impacts on the environment.