19 resultados para Discrete-Time Optimal Control
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This Thesis studies the optimal control problem of single-arm and dual-arm serial robots to achieve the time-optimal handling of liquids and objects. The first topic deals with the planning of time-optimal anti-sloshing trajectories of an industrial robot carrying a cylindrical container filled with a liquid, considering 1-dimensional and 2-dimensional planar motions. A technique for the estimation of the sloshing height is presented, together with its extension to 3-dimensional motions. An experimental validation campaign is provided and discussed to assess the thoroughness of such a technique. As far as anti-sloshing trajectories are concerned, 2-dimensional paths are considered and, for each one of them, three constrained optimizations with different values of the sloshing-height thresholds are solved. Experimental results are presented to compare optimized and non-optimized motions. The second part focuses on the time-optimal trajectory planning for dual-arm object handling, employing two collaborative robots (cobots) and adopting an admittance-control strategy. The chosen manipulation approach, known as cooperative grasping, is based on unilateral contact between the cobots and the object, and it may lead to slipping during motion if an internal prestress along the contact-normal direction is not prescribed. Thus, a virtual penetration is considered, aimed at generating the necessary internal prestress. The stability of cooperative grasping is ensured as long as the exerted forces on the object remain inside the static-friction cone. Constrained-optimization problems are solved for 3-dimensional paths: the virtual penetration is chosen among the control inputs of the problem and friction-cone conditions are treated as inequality constraints. Also in this case experiments are presented in order to prove evidence of the firm handling of the object, even for fast motions.
Resumo:
This thesis deals with the study of optimal control problems for the incompressible Magnetohydrodynamics (MHD) equations. Particular attention to these problems arises from several applications in science and engineering, such as fission nuclear reactors with liquid metal coolant and aluminum casting in metallurgy. In such applications it is of great interest to achieve the control on the fluid state variables through the action of the magnetic Lorentz force. In this thesis we investigate a class of boundary optimal control problems, in which the flow is controlled through the boundary conditions of the magnetic field. Due to their complexity, these problems present various challenges in the definition of an adequate solution approach, both from a theoretical and from a computational point of view. In this thesis we propose a new boundary control approach, based on lifting functions of the boundary conditions, which yields both theoretical and numerical advantages. With the introduction of lifting functions, boundary control problems can be formulated as extended distributed problems. We consider a systematic mathematical formulation of these problems in terms of the minimization of a cost functional constrained by the MHD equations. The existence of a solution to the flow equations and to the optimal control problem are shown. The Lagrange multiplier technique is used to derive an optimality system from which candidate solutions for the control problem can be obtained. In order to achieve the numerical solution of this system, a finite element approximation is considered for the discretization together with an appropriate gradient-type algorithm. A finite element object-oriented library has been developed to obtain a parallel and multigrid computational implementation of the optimality system based on a multiphysics approach. Numerical results of two- and three-dimensional computations show that a possible minimum for the control problem can be computed in a robust and accurate manner.
Resumo:
The main purpose of this work is to develop a numerical platform for the turbulence modeling and optimal control of liquid metal flows. Thanks to their interesting thermal properties, liquid metals are widely studied as coolants for heat transfer applications in the nuclear context. However, due to their low Prandtl numbers, the standard turbulence models commonly used for coolants as air or water are inadequate. Advanced turbulence models able to capture the anisotropy in the flow and heat transfer are then necessary. In this thesis, a new anisotropic four-parameter turbulence model is presented and validated. The proposed model is based on explicit algebraic models and solves four additional transport equations for dynamical and thermal turbulent variables. For the validation of the model, several flow configurations are considered for different Reynolds and Prandtl numbers, namely fully developed flows in a plane channel and cylindrical pipe, and forced and mixed convection in a backward-facing step geometry. Since buoyancy effects cannot be neglected in liquid metals-cooled fast reactors, the second aim of this work is to provide mathematical and numerical tools for the simulation and optimization of liquid metals in mixed and natural convection. Optimal control problems for turbulent buoyant flows are studied and analyzed with the Lagrange multipliers method. Numerical algorithms for optimal control problems are integrated into the numerical platform and several simulations are performed to show the robustness, consistency, and feasibility of the method.
Resumo:
This work provides a forward step in the study and comprehension of the relationships between stochastic processes and a certain class of integral-partial differential equation, which can be used in order to model anomalous diffusion and transport in statistical physics. In the first part, we brought the reader through the fundamental notions of probability and stochastic processes, stochastic integration and stochastic differential equations as well. In particular, within the study of H-sssi processes, we focused on fractional Brownian motion (fBm) and its discrete-time increment process, the fractional Gaussian noise (fGn), which provide examples of non-Markovian Gaussian processes. The fGn, together with stationary FARIMA processes, is widely used in the modeling and estimation of long-memory, or long-range dependence (LRD). Time series manifesting long-range dependence, are often observed in nature especially in physics, meteorology, climatology, but also in hydrology, geophysics, economy and many others. We deepely studied LRD, giving many real data examples, providing statistical analysis and introducing parametric methods of estimation. Then, we introduced the theory of fractional integrals and derivatives, which indeed turns out to be very appropriate for studying and modeling systems with long-memory properties. After having introduced the basics concepts, we provided many examples and applications. For instance, we investigated the relaxation equation with distributed order time-fractional derivatives, which describes models characterized by a strong memory component and can be used to model relaxation in complex systems, which deviates from the classical exponential Debye pattern. Then, we focused in the study of generalizations of the standard diffusion equation, by passing through the preliminary study of the fractional forward drift equation. Such generalizations have been obtained by using fractional integrals and derivatives of distributed orders. In order to find a connection between the anomalous diffusion described by these equations and the long-range dependence, we introduced and studied the generalized grey Brownian motion (ggBm), which is actually a parametric class of H-sssi processes, which have indeed marginal probability density function evolving in time according to a partial integro-differential equation of fractional type. The ggBm is of course Non-Markovian. All around the work, we have remarked many times that, starting from a master equation of a probability density function f(x,t), it is always possible to define an equivalence class of stochastic processes with the same marginal density function f(x,t). All these processes provide suitable stochastic models for the starting equation. Studying the ggBm, we just focused on a subclass made up of processes with stationary increments. The ggBm has been defined canonically in the so called grey noise space. However, we have been able to provide a characterization notwithstanding the underline probability space. We also pointed out that that the generalized grey Brownian motion is a direct generalization of a Gaussian process and in particular it generalizes Brownain motion and fractional Brownain motion as well. Finally, we introduced and analyzed a more general class of diffusion type equations related to certain non-Markovian stochastic processes. We started from the forward drift equation, which have been made non-local in time by the introduction of a suitable chosen memory kernel K(t). The resulting non-Markovian equation has been interpreted in a natural way as the evolution equation of the marginal density function of a random time process l(t). We then consider the subordinated process Y(t)=X(l(t)) where X(t) is a Markovian diffusion. The corresponding time-evolution of the marginal density function of Y(t) is governed by a non-Markovian Fokker-Planck equation which involves the same memory kernel K(t). We developed several applications and derived the exact solutions. Moreover, we considered different stochastic models for the given equations, providing path simulations.
Sviluppo di un sistema miniaturizzato per il controllo real-time di assetto di nano e microsatelliti
Resumo:
Microsatelliti e nanosatelliti, come ad esempio i Cubesat, sono carenti di sistemi integrati di controllo d’assetto e di manovra orbitale. Lo scopo di questa tesi è stato quello di realizzare un sistema compatibile con Cubesat di una unità, completo di attuatori magnetici e attuatori meccanici, comprendente tutti i sensori e l’elettronica necessaria per il suo funzionamento, creando un dispositivo totalmente indipendente dal veicolo su cui è installato, capace di funzionare sia autonomamente che ricevendo comandi da terra. Nella tesi sono descritte le campagne di simulazioni numeriche effettuate per validare le scelte tecnologiche effettuate, le fasi di sviluppo dell’elettronica e della meccanica, i test sui prototipi realizzati e il funzionamento del sistema finale. Una integrazione così estrema dei componenti può implicare delle interferenze tra un dispositivo e l’altro, come nel caso dei magnetotorquer e dei magnetometri. Sono stati quindi studiati e valutati gli effetti della loro interazione, verificandone l’entità e la validità del progetto. Poiché i componenti utilizzati sono tutti di basso costo e di derivazione terrestre, è stata effettuata una breve introduzione teorica agli effetti dell’ambiente spaziale sull’elettronica, per poi descrivere un sistema fault-tolerant basato su nuove teorie costruttive. Questo sistema è stato realizzato e testato, verificando così la possibilità di realizzare un controller affidabile e resistente all’ambiente spaziale per il sistema di controllo d’assetto. Sono state infine analizzate alcune possibili versioni avanzate del sistema, delineandone i principali aspetti progettuali, come ad esempio l’integrazione di GPS e l’implementazione di funzioni di determinazione d’assetto sfruttando i sensori presenti a bordo.
Resumo:
MultiProcessor Systems-on-Chip (MPSoC) are the core of nowadays and next generation computing platforms. Their relevance in the global market continuously increase, occupying an important role both in everydaylife products (e.g. smartphones, tablets, laptops, cars) and in strategical market sectors as aviation, defense, robotics, medicine. Despite of the incredible performance improvements in the recent years processors manufacturers have had to deal with issues, commonly called “Walls”, that have hindered the processors development. After the famous “Power Wall”, that limited the maximum frequency of a single core and marked the birth of the modern multiprocessors system-on-chip, the “Thermal Wall” and the “Utilization Wall” are the actual key limiter for performance improvements. The former concerns the damaging effects of the high temperature on the chip caused by the large power densities dissipation, whereas the second refers to the impossibility of fully exploiting the computing power of the processor due to the limitations on power and temperature budgets. In this thesis we faced these challenges by developing efficient and reliable solutions able to maximize performance while limiting the maximum temperature below a fixed critical threshold and saving energy. This has been possible by exploiting the Model Predictive Controller (MPC) paradigm that solves an optimization problem subject to constraints in order to find the optimal control decisions for the future interval. A fully-distributedMPC-based thermal controller with a far lower complexity respect to a centralized one has been developed. The control feasibility and interesting properties for the simplification of the control design has been proved by studying a partial differential equation thermal model. Finally, the controller has been efficiently included in more complex control schemes able to minimize energy consumption and deal with mixed-criticalities tasks
Resumo:
Traditionally, the study of internal combustion engines operation has focused on the steady-state performance. However, the daily driving schedule of automotive engines is inherently related to unsteady conditions. There are various operating conditions experienced by (diesel) engines that can be classified as transient. Besides the variation of the engine operating point, in terms of engine speed and torque, also the warm up phase can be considered as a transient condition. Chapter 2 has to do with this thermal transient condition; more precisely the main issue is the performance of a Selective Catalytic Reduction (SCR) system during cold start and warm up phases of the engine. The proposal of the underlying work is to investigate and identify optimal exhaust line heating strategies, to provide a fast activation of the catalytic reactions on SCR. Chapters 3 and 4 focus the attention on the dynamic behavior of the engine, when considering typical driving conditions. The common approach to dynamic optimization involves the solution of a single optimal-control problem. However, this approach requires the availability of models that are valid throughout the whole engine operating range and actuator ranges. In addition, the result of the optimization is meaningful only if the model is very accurate. Chapter 3 proposes a methodology to circumvent those demanding requirements: an iteration between transient measurements to refine a purpose-built model and a dynamic optimization which is constrained to the model validity region. Moreover all numerical methods required to implement this procedure are presented. Chapter 4 proposes an approach to derive a transient feedforward control system in an automated way. It relies on optimal control theory to solve a dynamic optimization problem for fast transients. From the optimal solutions, the relevant information is extracted and stored in maps spanned by the engine speed and the torque gradient.
Resumo:
Several decision and control tasks in cyber-physical networks can be formulated as large- scale optimization problems with coupling constraints. In these "constraint-coupled" problems, each agent is associated to a local decision variable, subject to individual constraints. This thesis explores the use of primal decomposition techniques to develop tailored distributed algorithms for this challenging set-up over graphs. We first develop a distributed scheme for convex problems over random time-varying graphs with non-uniform edge probabilities. The approach is then extended to unknown cost functions estimated online. Subsequently, we consider Mixed-Integer Linear Programs (MILPs), which are of great interest in smart grid control and cooperative robotics. We propose a distributed methodological framework to compute a feasible solution to the original MILP, with guaranteed suboptimality bounds, and extend it to general nonconvex problems. Monte Carlo simulations highlight that the approach represents a substantial breakthrough with respect to the state of the art, thus representing a valuable solution for new toolboxes addressing large-scale MILPs. We then propose a distributed Benders decomposition algorithm for asynchronous unreliable networks. The framework has been then used as starting point to develop distributed methodologies for a microgrid optimal control scenario. We develop an ad-hoc distributed strategy for a stochastic set-up with renewable energy sources, and show a case study with samples generated using Generative Adversarial Networks (GANs). We then introduce a software toolbox named ChoiRbot, based on the novel Robot Operating System 2, and show how it facilitates simulations and experiments in distributed multi-robot scenarios. Finally, we consider a Pickup-and-Delivery Vehicle Routing Problem for which we design a distributed method inspired to the approach of general MILPs, and show the efficacy through simulations and experiments in ChoiRbot with ground and aerial robots.
Resumo:
Electromagnetic spectrum can be identified as a resource for the designer, as well as for the manufacturer, from two complementary points of view: first, because it is a good in great demand by many different kind of applications; second, because despite its scarce availability, it may be advantageous to use more spectrum than necessary. This is the case of Spread-Spectrum Systems, those systems in which the transmitted signal is spread over a wide frequency band, much wider, in fact, than the minimum bandwidth required to transmit the information being sent. Part I of this dissertation deals with Spread-Spectrum Clock Generators (SSCG) aiming at reducing Electro Magnetic Interference (EMI) of clock signals in integrated circuits (IC) design. In particular, the modulation of the clock and the consequent spreading of its spectrum are obtained through a random modulating signal outputted by a chaotic map, i.e. a discrete-time dynamical system showing chaotic behavior. The advantages offered by this kind of modulation are highlighted. Three different prototypes of chaos-based SSCG are presented in all their aspects: design, simulation, and post-fabrication measurements. The third one, operating at a frequency equal to 3GHz, aims at being applied to Serial ATA, standard de facto for fast data transmission to and from Hard Disk Drives. The most extreme example of spread-spectrum signalling is the emerging ultra-wideband (UWB) technology, which proposes the use of large sections of the radio spectrum at low amplitudes to transmit high-bandwidth digital data. In part II of the dissertation, two UWB applications are presented, both dealing with the advantages as well as with the challenges of a wide-band system, namely: a chaos-based sequence generation method for reducing Multiple Access Interference (MAI) in Direct Sequence UWB Wireless-Sensor-Networks (WSNs), and design and simulations of a Low-Noise Amplifier (LNA) for impulse radio UWB. This latter topic was studied during a study-abroad period in collaboration with Delft University of Technology, Delft, Netherlands.
Resumo:
The last decades have seen an unrivaled growth and diffusion of mobile telecommunications. Several standards have been developed to this purposes, from GSM mobile phone communications to WLAN IEEE 802.11, providing different services for the the transmission of signals ranging from voice to high data rate digital communications and Digital Video Broadcasting (DVB). In this wide research and market field, this thesis focuses on Ultra Wideband (UWB) communications, an emerging technology for providing very high data rate transmissions over very short distances. In particular the presented research deals with the circuit design of enabling blocks for MB-OFDM UWB CMOS single-chip transceivers, namely the frequency synthesizer and the transmission mixer and power amplifier. First we discuss three different models for the simulation of chargepump phase-locked loops, namely the continuous time s-domain and discrete time z-domain approximations and the exact semi-analytical time-domain model. The limitations of the two approximated models are analyzed in terms of error in the computed settling time as a function of loop parameters, deriving practical conditions under which the different models are reliable for fast settling PLLs up to fourth order. Besides, a phase noise analysis method based upon the time-domain model is introduced and compared to the results obtained by means of the s-domain model. We compare the three models over the simulation of a fast switching PLL to be integrated in a frequency synthesizer for WiMedia MB-OFDM UWB systems. In the second part, the theoretical analysis is applied to the design of a 60mW 3.4 to 9.2GHz 12 Bands frequency synthesizer for MB-OFDM UWB based on two wide-band PLLs. The design is presented and discussed up to layout level. A test chip has been implemented in TSMC CMOS 90nm technology, measured data is provided. The functionality of the circuit is proved and specifications are met with state-of-the-art area occupation and power consumption. The last part of the thesis deals with the design of a transmission mixer and a power amplifier for MB-OFDM UWB band group 1. The design has been carried on up to layout level in ST Microlectronics 65nm CMOS technology. Main characteristics of the systems are the wideband behavior (1.6 GHz of bandwidth) and the constant behavior over process parameters, temperature and supply voltage thanks to the design of dedicated adaptive biasing circuits.
Resumo:
The improvement of devices provided by Nanotechnology has put forward new classes of sensors, called bio-nanosensors, which are very promising for the detection of biochemical molecules in a large variety of applications. Their use in lab-on-a-chip could gives rise to new opportunities in many fields, from health-care and bio-warfare to environmental and high-throughput screening for pharmaceutical industry. Bio-nanosensors have great advantages in terms of cost, performance, and parallelization. Indeed, they require very low quantities of reagents and improve the overall signal-to-noise-ratio due to increase of binding signal variations vs. area and reduction of stray capacitances. Additionally, they give rise to new challenges, such as the need to design high-performance low-noise integrated electronic interfaces. This thesis is related to the design of high-performance advanced CMOS interfaces for electrochemical bio-nanosensors. The main focus of the thesis is: 1) critical analysis of noise in sensing interfaces, 2) devising new techniques for noise reduction in discrete-time approaches, 3) developing new architectures for low-noise, low-power sensing interfaces. The manuscript reports a multi-project activity focusing on low-noise design and presents two developed integrated circuits (ICs) as examples of advanced CMOS interfaces for bio-nanosensors. The first project concerns low-noise current-sensing interface for DC and transient measurements of electrophysiological signals. The focus of this research activity is on the noise optimization of the electronic interface. A new noise reduction technique has been developed so as to realize an integrated CMOS interfaces with performance comparable with state-of-the-art instrumentations. The second project intends to realize a stand-alone, high-accuracy electrochemical impedance spectroscopy interface. The system is tailored for conductivity-temperature-depth sensors in environmental applications, as well as for bio-nanosensors. It is based on a band-pass delta-sigma technique and combines low-noise performance with low-power requirements.
Resumo:
La ricerca è stata incentrata su di una fonte di grande importanza per una più puntuale comprensione della vita del regno di Federico II: il Quaternus excadenciarum Capitinate. Essa ha tenuto presenti le altre fonti coeve: Liber Augustalis, Registro della Cancelleria di Federico II degli anni 1239-1240, fonti cronachistiche. Il Quaternus è un inventario di talune particolari categorie di beni demaniali, le excadencie, la cui concessione è scaduta e pertanto ritornano al fisco. Tali beni sono situati in 33 località del Giustizierato di Capitanata. Senza data, è stato redatto tra il 1249 e il 1250 (risultano inseriti i beni confiscati a Pier della Vigna, bollato di tradimento nel febbraio 1249). Obiettivo della ricerca è stato duplice: 1) analizzare e approfondire le questioni di natura giuridico-istituzionale ed economica implicate nel documento e tentare di ricostruire uno spaccato della Capitanata del XIII sec.; 2) offrire una nuova e più corretta edizione del testo. La prima parte dello studio ha inteso inquadrare il documento nel contesto delle esigenze proprie delle monarchie del tempo di tenere sotto controllo i beni immobili di ciascun regno ed analizzare la politica economica fridericiana (capp. I, II). La seconda parte è stata dedicata agli approfondimenti innanzi ricordati. Essa è struttura in sette capitoli (I. Il Quaternus excadenciarum Capitinate; II. Beni e diritti costituenti le excadencie Capitinate; III. Il Quaternus come specchio di una politica dispotica; IV. La gestione delle excadencie; V. Pesi e misure; VI. Monete e valori; VII. Il Quaternus come documento sullo stato della Capitanata nel XIII secolo). In appendice: tabelle che offrono per ciascuna delle 33 località considerate, puntuali indicazioni dei beni e diritti censiti, dei nomi dei titolari delle concessioni (spesso personaggi di rango) e delle relative rendite.
Resumo:
The first paper sheds light on the informational content of high frequency data and daily data. I assess the economic value of the two family models comparing their performance in forecasting asset volatility through the Value at Risk metric. In running the comparison this paper introduces two key assumptions: jumps in prices and leverage effect in volatility dynamics. Findings suggest that high frequency data models do not exhibit a superior performance over daily data models. In the second paper, building on Majewski et al. (2015), I propose an affine-discrete time model, labeled VARG-J, which is characterized by a multifactor volatility specification. In the VARG-J model volatility experiences periods of extreme movements through a jump factor modeled as an Autoregressive Gamma Zero process. The estimation under historical measure is done by quasi-maximum likelihood and the Extended Kalman Filter. This strategy allows to filter out both volatility factors introducing a measurement equation that relates the Realized Volatility to latent volatility. The risk premia parameters are calibrated using call options written on S&P500 Index. The results clearly illustrate the important contribution of the jump factor in the pricing performance of options and the economic significance of the volatility jump risk premia. In the third paper, I analyze whether there is empirical evidence of contagion at the bank level, measuring the direction and the size of contagion transmission between European markets. In order to understand and quantify the contagion transmission on banking market, I estimate the econometric model by Aït-Sahalia et al. (2015) in which contagion is defined as the within and between countries transmission of shocks and asset returns are directly modeled as a Hawkes jump diffusion process. The empirical analysis indicates that there is a clear evidence of contagion from Greece to European countries as well as self-contagion in all countries.
Resumo:
Over the past years, ray tracing (RT) models popularity has been increasing. From the nineties, RT has been used for field prediction in environment such as indoor and urban environments. Nevertheless, with the advent of new technologies, the channel model has become decidedly more dynamic and to perform RT simulations at each discrete time instant become computationally expensive. In this thesis, a new dynamic ray tracing (DRT) approach is presented in which from a single ray tracing simulation at an initial time t0, through analytical formulas we are able to track the motion of the interaction points. The benefits that this approach bring are that Doppler frequencies and channel prediction can be derived at every time instant, without recurring to multiple RT runs and therefore shortening the computation time. DRT performance was studied on two case studies and the results shows the accuracy and the computational gain that derives from this approach. Another issue that has been addressed in this thesis is the licensed band exhaustion of some frequency bands. To deal with this problem, a novel unselfish spectrum leasing scheme in cognitive radio networks (CRNs) is proposed that offers an energy-efficient solution minimizing the environmental impact of the network. In addition, a network management architecture is introduced and resource allocation is proposed as a constrained sum energy efficiency maximization problem. System simulations demonstrate an increment in the energy efficiency of the primary users’ network compared with previously proposed algorithms.