6 resultados para Discrete time control systems
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Constraints are widely present in the flight control problems: actuators saturations or flight envelope limitations are only some examples of that. The ability of Model Predictive Control (MPC) of dealing with the constraints joined with the increased computational power of modern calculators makes this approach attractive also for fast dynamics systems such as agile air vehicles. This PhD thesis presents the results, achieved at the Aerospace Engineering Department of the University of Bologna in collaboration with the Dutch National Aerospace Laboratories (NLR), concerning the development of a model predictive control system for small scale rotorcraft UAS. Several different predictive architectures have been evaluated and tested by means of simulation, as a result of this analysis the most promising one has been used to implement three different control systems: a Stability and Control Augmentation System, a trajectory tracking and a path following system. The systems have been compared with a corresponding baseline controller and showed several advantages in terms of performance, stability and robustness.
Resumo:
This work provides a forward step in the study and comprehension of the relationships between stochastic processes and a certain class of integral-partial differential equation, which can be used in order to model anomalous diffusion and transport in statistical physics. In the first part, we brought the reader through the fundamental notions of probability and stochastic processes, stochastic integration and stochastic differential equations as well. In particular, within the study of H-sssi processes, we focused on fractional Brownian motion (fBm) and its discrete-time increment process, the fractional Gaussian noise (fGn), which provide examples of non-Markovian Gaussian processes. The fGn, together with stationary FARIMA processes, is widely used in the modeling and estimation of long-memory, or long-range dependence (LRD). Time series manifesting long-range dependence, are often observed in nature especially in physics, meteorology, climatology, but also in hydrology, geophysics, economy and many others. We deepely studied LRD, giving many real data examples, providing statistical analysis and introducing parametric methods of estimation. Then, we introduced the theory of fractional integrals and derivatives, which indeed turns out to be very appropriate for studying and modeling systems with long-memory properties. After having introduced the basics concepts, we provided many examples and applications. For instance, we investigated the relaxation equation with distributed order time-fractional derivatives, which describes models characterized by a strong memory component and can be used to model relaxation in complex systems, which deviates from the classical exponential Debye pattern. Then, we focused in the study of generalizations of the standard diffusion equation, by passing through the preliminary study of the fractional forward drift equation. Such generalizations have been obtained by using fractional integrals and derivatives of distributed orders. In order to find a connection between the anomalous diffusion described by these equations and the long-range dependence, we introduced and studied the generalized grey Brownian motion (ggBm), which is actually a parametric class of H-sssi processes, which have indeed marginal probability density function evolving in time according to a partial integro-differential equation of fractional type. The ggBm is of course Non-Markovian. All around the work, we have remarked many times that, starting from a master equation of a probability density function f(x,t), it is always possible to define an equivalence class of stochastic processes with the same marginal density function f(x,t). All these processes provide suitable stochastic models for the starting equation. Studying the ggBm, we just focused on a subclass made up of processes with stationary increments. The ggBm has been defined canonically in the so called grey noise space. However, we have been able to provide a characterization notwithstanding the underline probability space. We also pointed out that that the generalized grey Brownian motion is a direct generalization of a Gaussian process and in particular it generalizes Brownain motion and fractional Brownain motion as well. Finally, we introduced and analyzed a more general class of diffusion type equations related to certain non-Markovian stochastic processes. We started from the forward drift equation, which have been made non-local in time by the introduction of a suitable chosen memory kernel K(t). The resulting non-Markovian equation has been interpreted in a natural way as the evolution equation of the marginal density function of a random time process l(t). We then consider the subordinated process Y(t)=X(l(t)) where X(t) is a Markovian diffusion. The corresponding time-evolution of the marginal density function of Y(t) is governed by a non-Markovian Fokker-Planck equation which involves the same memory kernel K(t). We developed several applications and derived the exact solutions. Moreover, we considered different stochastic models for the given equations, providing path simulations.
Sviluppo di un sistema miniaturizzato per il controllo real-time di assetto di nano e microsatelliti
Resumo:
Microsatelliti e nanosatelliti, come ad esempio i Cubesat, sono carenti di sistemi integrati di controllo d’assetto e di manovra orbitale. Lo scopo di questa tesi è stato quello di realizzare un sistema compatibile con Cubesat di una unità, completo di attuatori magnetici e attuatori meccanici, comprendente tutti i sensori e l’elettronica necessaria per il suo funzionamento, creando un dispositivo totalmente indipendente dal veicolo su cui è installato, capace di funzionare sia autonomamente che ricevendo comandi da terra. Nella tesi sono descritte le campagne di simulazioni numeriche effettuate per validare le scelte tecnologiche effettuate, le fasi di sviluppo dell’elettronica e della meccanica, i test sui prototipi realizzati e il funzionamento del sistema finale. Una integrazione così estrema dei componenti può implicare delle interferenze tra un dispositivo e l’altro, come nel caso dei magnetotorquer e dei magnetometri. Sono stati quindi studiati e valutati gli effetti della loro interazione, verificandone l’entità e la validità del progetto. Poiché i componenti utilizzati sono tutti di basso costo e di derivazione terrestre, è stata effettuata una breve introduzione teorica agli effetti dell’ambiente spaziale sull’elettronica, per poi descrivere un sistema fault-tolerant basato su nuove teorie costruttive. Questo sistema è stato realizzato e testato, verificando così la possibilità di realizzare un controller affidabile e resistente all’ambiente spaziale per il sistema di controllo d’assetto. Sono state infine analizzate alcune possibili versioni avanzate del sistema, delineandone i principali aspetti progettuali, come ad esempio l’integrazione di GPS e l’implementazione di funzioni di determinazione d’assetto sfruttando i sensori presenti a bordo.
Resumo:
The topic of this thesis is the feedback stabilization of the attitude of magnetically actuated spacecraft. The use of magnetic coils is an attractive solution for the generation of control torques on small satellites flying inclined low Earth orbits, since magnetic control systems are characterized by reduced weight and cost, higher reliability, and require less power with respect to other kinds of actuators. At the same time, the possibility of smooth modulation of control torques reduces coupling of the attitude control system with flexible modes, thus preserving pointing precision with respect to the case when pulse-modulated thrusters are used. The principle based on the interaction between the Earth's magnetic field and the magnetic field generated by the set of coils introduces an inherent nonlinearity, because control torques can be delivered only in a plane that is orthogonal to the direction of the geomagnetic field vector. In other words, the system is underactuated, because the rotational degrees of freedom of the spacecraft, modeled as a rigid body, exceed the number of independent control actions. The solution of the control issue for underactuated spacecraft is also interesting in the case of actuator failure, e.g. after the loss of a reaction-wheel in a three-axes stabilized spacecraft with no redundancy. The application of well known control strategies is no longer possible in this case for both regulation and tracking, so that new methods have been suggested for tackling this particular problem. The main contribution of this thesis is to propose continuous time-varying controllers that globally stabilize the attitude of a spacecraft, when magneto-torquers alone are used and when a momentum-wheel supports magnetic control in order to overcome the inherent underactuation. A kinematic maneuver planning scheme, stability analyses, and detailed simulation results are also provided, with new theoretical developments and particular attention toward application considerations.
Resumo:
Massive parallel robots (MPRs) driven by discrete actuators are force regulated robots that undergo continuous motions despite being commanded through a finite number of states only. Designing a real-time control of such systems requires fast and efficient methods for solving their inverse static analysis (ISA), which is a challenging problem and the subject of this thesis. In particular, five Artificial intelligence methods are proposed to investigate the on-line computation and the generalization error of ISA problem of a class of MPRs featuring three-state force actuators and one degree of revolute motion.
Resumo:
A new control scheme has been presented in this thesis. Based on the NonLinear Geometric Approach, the proposed Active Control System represents a new way to see the reconfigurable controllers for aerospace applications. The presence of the Diagnosis module (providing the estimation of generic signals which, based on the case, can be faults, disturbances or system parameters), mean feature of the depicted Active Control System, is a characteristic shared by three well known control systems: the Active Fault Tolerant Controls, the Indirect Adaptive Controls and the Active Disturbance Rejection Controls. The standard NonLinear Geometric Approach (NLGA) has been accurately investigated and than improved to extend its applicability to more complex models. The standard NLGA procedure has been modified to take account of feasible and estimable sets of unknown signals. Furthermore the application of the Singular Perturbations approximation has led to the solution of Detection and Isolation problems in scenarios too complex to be solved by the standard NLGA. Also the estimation process has been improved, where multiple redundant measuremtent are available, by the introduction of a new algorithm, here called "Least Squares - Sliding Mode". It guarantees optimality, in the sense of the least squares, and finite estimation time, in the sense of the sliding mode. The Active Control System concept has been formalized in two controller: a nonlinear backstepping controller and a nonlinear composite controller. Particularly interesting is the integration, in the controller design, of the estimations coming from the Diagnosis module. Stability proofs are provided for both the control schemes. Finally, different applications in aerospace have been provided to show the applicability and the effectiveness of the proposed NLGA-based Active Control System.